**Convention on Long-range Transboundary Air Pollution** 

# emep emep

*Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe* 

Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components

# Status Report 1/2018



Modelled (red) and observed (blue) annual time series of air concentrations of total reduced nitrogen from 2000 to 2016 (25 and 75 percentiles are shown as shaded areas)

msc-w & ccc & ceip

METEOROLOGISK INSTITUTT Norwegian Meteorological Institute

# Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components

| EMEP/MSC-W:          | Hilde Fagerli, Svetlana Tsyro, Jan Eiof Jonson,<br>Ágnes Nyíri, Michael Gauss, David Simpson,<br>Peter Wind, Anna Benedictow, Alvaro Valdebenito,<br>Heiko Klein, Michael Schulz, Augustin Mortier |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMEP/CCC:            | Wenche Aas, Anne-Gunn Hjellbrekke, Sverre Solberg,<br>Stephen Matthew Platt, Karl Espen Yttri,<br>Richard Olav Rud, Kjetil Tørseth                                                                 |
| EMEP/CEIP:           | Katarina Mareckova, Bradley Matthews, Melanie Tista,<br>Robert Wankmüller                                                                                                                          |
| CIAM/IIASA:          | Maximilian Posch                                                                                                                                                                                   |
| Chalmers Univ. Tech. | Robert Bergström <sup>1</sup><br>( <sup>1</sup> on leave from SMHI)                                                                                                                                |
| Prov.Trentino:       | Paolo Lazzeri                                                                                                                                                                                      |
| IDAEA-CSIC:          | Marco Pandolfi                                                                                                                                                                                     |
| Univ. of Helsinki:   | Krista Luoma                                                                                                                                                                                       |
| FMI:                 | Minna Aurela                                                                                                                                                                                       |
| ISSeP:               | Fabian Lenartz, Benjamin Bergmans                                                                                                                                                                  |
| ARPA:                | Sara Pittavino, Ivan Tombolato                                                                                                                                                                     |

# EMEP Status Report 2018; August 22, 2018

ISSN 1504-6109 (print) ISSN 1504-6192 (on-line)

# **Executive Summary**

This report presents the EMEP activities in 2017 and 2018 in relation to transboundary fluxes of particulate matter, photo-oxidants, acidifying and eutrophying components, with focus on results for 2016. It presents major results of the activities related to emission inventories, observations and modelling. The report also introduces specific relevant research activities addressing EMEP key challenges, as well as technical developments of the observation and modelling capacities.

#### Measurements and model results for 2016

In the first chapter, the status of air pollution in 2016 is presented, combining meteorological information with numerical simulations using the EMEP MSC-W model together with observed air concentration and deposition data.

Altogether 32 Parties reported measurement data for 2016, from 161 sites in total. Of these, 130 sites reported measurements of inorganic ions in precipitation and/or main components in air; 73 of these sites had co-located measurements in both air and precipitation. The ozone network consisted of 139 sites, particulate matter was measured at 70 sites, of which 50 performed measurements of both  $PM_{10}$  and  $PM_{2.5}$ . In addition, 52 sites reported at least one of the components required in the advanced EMEP measurement program (level 2). A complete aerosol program was implemented at 12 sites, while only a few sites provided the required oxidant precursor measurements.

The mean daily max  $O_3$ , SOMO35 and AOT40 all show a distinct gradient with levels increasing from north to south, a well established feature for ozone in general reflecting the dependency of ozone on the photochemical conditions. The geographical pattern in the measured values are fairly well reflected by the model results for all these three metrics. In particular, the modelled mean daily max for the summer half year agrees very well with the measured values except for an underestimation in a few regions, mainly in the Mediterranean. Particularly high levels are predicted by the model in the southeast, but due to the lack of monitoring sites these levels could not be validated.

The modelling results and the observations show that the annual mean levels of  $PM_{10}$  and  $PM_{2.5}$  in general increase over land from north to south. The concentration levels are below 2-5  $\mu$ g m<sup>-3</sup> in Northern Europe, increasing to 5-15  $\mu$ g m<sup>-3</sup> in the mid-latitude and further south. Elevated  $PM_{10}$  and  $PM_{2.5}$  levels of 15-20  $\mu$ g m<sup>-3</sup> occurred in some areas (the Benelux countries and parts of Germany, Poland and East-European countries). A hot spot

is seen in the Po Valley, with calculated  $PM_{2.5}$  and  $PM_{10}$  exceeding 20-30  $\mu$ g m<sup>-3</sup>. There is good agreement between the modelled and observed distribution of mean  $PM_{10}$  and  $PM_{2.5}$ , with annual mean correlation coefficients of 0.78 and 0.71 respectively. Overall, the model underestimates the observed annual mean  $PM_{10}$  and  $PM_{2.5}$  by 22% and 10% respectively.

Over most of the European part of the EMEP grid, mean concentrations of  $PM_{10}$  and  $PM_{2.5}$  in 2016 were 10-30 % lower compared to mean PM levels in the 2000-2015 period, while they were 5-30 % higher in the very eastern and southern EMEP areas. This is consistent with the emission changes during that period (decrease in the western part, while increase in the eastern part of the EMEP domain). In addition, the precipitation anomaly distribution suggestes that enhanced wet removal of aerosols from the air contributed to lower PM pollution over large areas in 2016.

#### Exceedances and pollution episodes in 2016

In general, there were fewer high ozone episodes and lower  $O_3$  levels in 2016 compared to 2015. An unusual event of high ozone levels in September occurred, with several monitoring sites having their annual peak ozone level during these days including levels above the EU information threshold of 180  $\mu$ g m<sup>-3</sup>. Record-high temperatures (well above 30°C) were recorded followed by record-high levels of ozone the following days. Our results indicate a very good agreement between the modelled and measured levels for this episode, both with respect to the location of the ozone plume and the concentration levels.

Model results and EMEP observational data show that in 2016, the annual mean  $PM_{10}$  and  $PM_{2.5}$  concentrations were below the EU limit values for all of Europe. As far as daily concentrations are concerned, exceedance days for  $PM_{10}$  were observed at 34 out of 63 sites, but no violations of the  $PM_{10}$  EU limit value (more than 35 exceedance days) were registered (still 15 sites had more than 3 exceedance days, the recommended Air Quality Guidline (AQG) by WHO).  $PM_{2.5}$  concentrations exceeded the WHO AQG value at 33 out of 46 stations in 2016 (on more than 3 days at 27 sites).

The major PM pollution episodes occurred in January, March and December 2016. The winter episodes, seen almost every year, are typically caused by a combination of stagnant air conditions and enhanced use of wood burning for residential heating during cold weather situations. On the other hand, agriculture and traffic emissions appear to be main contributors to the spring episodes. The different chemical composition of  $PM_{2.5}$  at three selected sites confirms the diversity of the emission sources causing the episodes at different locations.

Critical loads (CL) for eutrophication were exceeded in virtually all countries in 2016, in about 61.7% of the ecosystem area (73% in the EU28) and the European average exceedance is about 217 eq ha<sup>-1</sup>yr<sup>-1</sup> (289 eq ha<sup>-1</sup>yr<sup>-1</sup> in the EU28). The highest exceedances are found in the Po Valley in Italy, the Dutch-German-Danish border areas and in north-eastern Spain.

In contrast, critical loads of acidity are exceeded in a much smaller area. Hot spots of exceedances can be found in the Netherlands and its border areas to Germany and Belgium, and some smaller maximum in southern Germany and the Czech Republic, whereas most of Europe in not exceeded. In Europe as a whole, acidity exceedances in 2016 occur in about 5.3% of the ecosystem area (6.6% in the EU28), and the European average exceedance is about 20 eq ha<sup>-1</sup>yr<sup>-1</sup> (28 eq ha<sup>-1</sup>yr<sup>-1</sup> in the EU28).

#### Model simulations for 2000-2016 in the new EMEP grid

This year, CEIP created a new set of emissions for 2000-2016 using the  $0.1^{\circ} \times 0.1^{\circ}$  resolution gridding system and updated emission data. The latest EMEP MSC-W model version has

been used to calculate a consistent time series of air pollution. Furthermore, a new trend interface (http://aerocom.met.no/trends/EMEP/) has been developed at MSC-W. The interface allows visualization of the trends for different pollutants at all EMEP sites, and will be extended to include EMEP measurement data where these are available. Work is also in progress to include source categories as a part of this visualization tool.

#### Source receptor matrices in the new EMEP grid

Last year it was the first time Parties to the Convention reported emissions in the new grid in  $0.1^{\circ} \times 0.1^{\circ}$  resolution and longitude-latitude projection. This year, these fine scale emissions are used in calculations of source receptor matrices (SRMs). In addition, the country border data set has been updated using high resolution information. The new country border data set is more accurate than the old  $50 \times 50 \text{km}^2$  data set and also consistent with what is used for emission distribution by CEIP.

As completing the SRMs calculations in the  $0.1^{\circ} \times 0.1^{\circ}$  resolution is difficult within the current deadlines, a series of tests has been made to estimate the effect of the choice of the grid resolution on SRMs. For 5 selected countries, we compared SRMs calculated with 3 different resolutions  $(0.1^{\circ} \times 0.1^{\circ}, 0.3^{\circ} \times 0.2^{\circ} \text{ and } 0.4^{\circ} \times 0.3^{\circ})$ . For the country-to-itself contribution, the overall differences in SRMs due to different model resolutions are small for depositions (a few percent), but somewhat larger for PM and ozone (up to 11%). For the individual transboundary contributions, differences can be larger, especially when the pollution is transported across mountain areas and/or is very small. Based on this analysis, we decided to calculate SRMs for 2016 in  $0.3^{\circ} \times 0.2^{\circ}$  resolution, as the  $0.3^{\circ} \times 0.2^{\circ}$  results were somewhat closer to  $0.1^{\circ} \times 0.1^{\circ}$  results than  $0.4^{\circ} \times 0.3^{\circ}$ .

In addition, we studied how the country border data set affects the SRMs. Overall, the differences due to using a new country border data set are as large as the differences due to the different model resolutions.

#### Status of emissions

Completeness and consistency of submitted emission data have improved significantly since EMEP started collecting information on emissions, and at least 45 Parties reported emission data to CEIP each year for the last seven years. In 2018, 45 out of 51 Parties (88%) submitted emission inventories. However, the quality of submitted data differs significantly across countries, and the uncertainty in the data is considered to be relatively large.

The reporting of CLRTAP inventories by EECCA countries to the Convention is still limited. In the last five years only Georgia, the Russian Federation and Ukraine provided annual submissions. CEIP conducts in-depth reviews of inventories, which support Parties in compiling and submitting high quality inventories and aims to increase confidence in the data used for air pollution modelling. In 2018, an in-depth review of the inventories of the Republic of Moldova, Armenia, Belarus, Ukraine and Azerbaijan will be made. In 2019, the Russian Federation and Georgia, and in 2020, Kyrgyzstan and Kazakhstan will be reviewed.

Last year was the first year with reporting obligation of gridded emissions in the new grid resolution of  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude. 29 of the 48 countries which are part of the EMEP area did report sectoral gridded emissions in the new resolution until June 2018. One country reported only gridded national total values (instead of sectoral data).

The majority of gridded sectoral emissions in  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution have been reported for the year 2015 (28 countries). For the year 2016, gridded sectoral emissions have been reported by three countries. Two of the three countries reported too late, which is why data could not be used for preparing gridded emissions in 2018.

Reported gridded sectoral data cover less than 20% of the grid cells within the geographical EMEP domain. For remaining areas missing emissions are gap-filled and spatially distributed using expert estimates. This year CEIP also performed gap-filling and gridding for the whole time series from 2000 to 2016 in  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution on GNFR sector level.

Emissions from international shipping occurring in different European seas were updated for the period of 2000 to 2016 based on global shipping emissions from FMI (Finnish Meteorological Institute) for the year 2015 (and also for 2011 in case of  $NO_x$  and  $SO_x$  in the Baltic and the North Sea). For the year 2016 the FMI emission values for 2015 was used, while for historical shipping emissions the FMI data were adjusted according to trends from data developed within the EU Horizon2020 project MACC-III and the ICCT Report. NMVOC emissions from international shipping have been estimated to be 10.9% of the CO emissions.

The development in emissions in the eastern and western parts of the EMEP area seems to follow different patterns. While emissions of all pollutants in the western part of the EMEP domain are slowly decreasing, emissions of all pollutants in the eastern part of the EMEP domain have increased since the year 2000. The emissions in western parts of the EMEP area are mostly based on reported data, while the emissions in eastern parts often are based on expert estimates (with larger uncertainty). From 2000 to 2016, the total change in emissions for the EMEP area has been: NO<sub>x</sub> (-6%), NMVOCs (-3%), SO<sub>2</sub> (-30%), NH<sub>3</sub> (+22%), PM<sub>2.5</sub> (+6%), PM<sub>coarse</sub> (+17%) and CO (-17%).

#### Effect of ship traffic emissions

The contributions from ship traffic to air pollution in Europe have been calculated with a global version of the EMEP model. For ozone and ozone indicators, such as SOMO35 and POD<sub>1</sub> forest, the variability in the percentage contributions is large between countries and regions, with ship emissions resulting in reductions in several western European countries but substantial increases in other (mainly Mediterranean) countries. Regarding the effects of ship emissions from the Baltic Sea and the North Sea on adjacent countries, the percentage contributions to the ozone indicators SOMO35 and POD<sub>1</sub> forest are substantially larger (positive or negative) than to annually averaged ozone.

For a number of coastal countries, calculated contributions to  $PM_{2.5}$  and depositions of sulphur and oxidized nitrogen from ships constitute 10% or more of the global anthropogenic total. The long-range transported contributions, calculated with a global version of the EMEP model, appear larger than in the regional model calculations. This may in part be explained by the different meteorological conditions in the different years (2015 for the global and 2014/2016 for the regional calculations), but also by the coarser resolution used in the global calculations. Nevertheless, all our calculations show large reductions in sulphur depositions and some reductions in  $PM_{2.5}$  levels as a result of the implementation of SECA in the North Sea and the Baltic Sea, in countries bordering these two sea areas.

#### Equivalent Black Carbon (EBC) from fossil fuel and biomass burning sources

A joint EMEP/ACTRIS/COLOSSAL intensive measurement period was conducted in winter 2017-2018 (IMP Winter 2018), using multi-wavelength aethalometer measurements of equivalent black carbon (EBC) and a novel application of positive matrix factorisation (PMF) for source apportionment of EBC into fossil fuel (EBC<sub>ff</sub>) and biomass burning (EBC<sub>bb</sub>) origin.

The IMP aims to provide a harmonized European-wide data set of  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$  appli-

cable for model validation, to encourage initiation of regular monitoring of  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$ , and reporting of such data to EMEP, and to substantially improve knowledge of carbonaceous aerosol sources in Europe. The 57 sites, situated in the 24 different countries participating in the IMP, underpin the great interest and knowledge requirement in this topic across Europe. Here, we report preliminary results from five of these sites, three urban sites in the Mediterranean region and two rural sites in Finland.

EBC<sub>ff</sub> (45-74%) made a larger contribution to EBC than EBC<sub>bb</sub> (26-55%) at all sites but one urban one. Diurnal variation was pronounced at the urban sites, and substantially different between EBC<sub>ff</sub> and EBC<sub>bb</sub>, clearly showing the influence of morning and afternoon traffic rush hours on EBC<sub>ff</sub> and residential wood burning, commencing in early evening and continuing through the night, on EBC<sub>bb</sub>. No diurnal variation was seen for the two rural sites, suggesting minor or no influence from local sources and that long-range atmospheric transport prevailed. Comparison between the biomass burning tracer levoglucosan and EBC<sub>bb</sub> showed a very high degree of correlation ( $r^2 = 0.94 - 0.96$ ), demonstrating the effectiveness of the novel PMF approach, as do the pronounced diurnal variations seen for the urban sites. Aerosol Angström exponents (AAE) derived from the PMF approach ranged from 0.92 - 1.08 for fossil fuel (AAE<sub>ff</sub>) and from 1.27 - 1.51 for biomass burning (AAE<sub>bb</sub>), which is in line with findings from the most recent and updated study discussing AAE in Europe.

Data from the participating sites will be analyzed according to the PMF approach as soon as possible after they are submitted to EMEP and found to have a sufficient data and metadata quality.

#### **Model improvements**

Most of the changes made in the EMEP MSC-W model since last year have been concerned with improvements to the model code and usability, and these have had little impact on model results. These improvements include several updates and bug-fixes to the chemical scheme, improved compatibility between the older SNAP and new GNFR emission sectors, updated land-cover database and improved handling of WRF and AROME meteorology. One major change did occur, however, and that concerns the treatment of photosynthetically active radiation (PAR) in the model, which impacts both biogenic VOC emissions and ozone flux estimates. The changed radiation scheme seems to mainly impact  $POD_1$  estimates for forests (now reduced), with only small changes in  $POD_3$  for crops or ozone concentrations.

#### Development in the monitoring network and database infrastructure

The last chapter of the report presents the implementation of the EMEP monitoring strategy and general development in the monitoring programme including data submission. There are large differences between Parties in the level of implementation, as well as significant changes in the national activities during the period 2000-2016. With respect to the requirement for level 1 monitoring, 42% of the Parties have had an improvement since 2010, while 30% have reduced the level of monitoring. For level 2 monitoring there has been a general positive development in recent years. However, in large parts of Europe the implementation of the EMEP monitoring strategy is still unsatisfactory.

The complexity of data reporting has increased in recent years. To improve the quality and timeliness of data reporting, the new online data submission and validation tool has been further developed to give better feedback when errors in the files occur, including automatic checks for inconsistency and outliers. The correctness of the data files submitted has improved significantly during the last years.

# Acknowledgments

This work has been funded by the EMEP Trust Fund.

The development of the EMEP MSC-W model has also been supported by Copernicus Atmosphere Modelling Service (CAMS) projects, the Nordic Council of Ministers, the Norwegian Space Centre and the Norwegian Ministry of the Environment. Development work has also been supported in Sweden, at Chalmers University of Technology using funds from the Swedish Strategic Research project MERGE, the Swedish-China project PhotoSmog and FORMAS.

The development of the local fraction method of the EMEP MSC-W model has been supported by the Norwegian Research Council project AIRQUIP.

The work presented here has benefited largely from the work carried out under the four EMEP Task Forces and in particular under TFMM.

A large number of co-workers in participating countries have contributed in submitting quality assured data. The EMEP centers would like to express their gratitude for continued good co-operation and effort. The institutes and persons providing data are listed in the EMEP/CCC's data report and identified together with the data sets in the EBAS database.

For developing standardized methods, harmonization of measurements and improving the reporting guidelines and tools, the close co-operations with participants in the European Research Infrastructure for the observation of Aerosol, Clouds, and Trace gases (ACTRIS) as well as with the Scientific Advisory Groups (SAGs) in WMO/GAW are especially appreciated.

Dr. Jukka-Pekka Jalkanen (FMI, Finland) is acknowledged for valuable comments on the chapter on the Effects of International Shipping. The European Regional Development Fund has supported the work on ship emissions through the Interreg BSR project EnviSum.

The Working Group on Effects and its ICPs and Task Forces are acknowledged for their assistance in determining the risk of damage from air pollution. Maximilian Posch at the Centre for Integrated Assessment Modelling (CIAM) performed the calculations of the exceedances of critical loads based on the latest critical loads database.

This work has received support from the Research Council of Norway (Programme for Supercomputing) through CPU time granted at the supercomputers at NTNU in Trondheim, the University of Tromsø, and the University of Bergen through the EMEP project (grant NN2890K) for CPU, and the NorStore project European Monitoring and Evaluation Programme (grant NS9005K) for storage. IT infrastructure in general was available through the Norwegian Meteorological Institute (MET Norway). Furthermore, the CPU time granted on the supercomputers owned by MET Norway has been of crucial importance for this year's source-receptor matrices and trend calculations. The CPU time made available by ECMWF to generate meteorology has been important for both the source-receptor and status calculations in this year's report.

# Contents

| 1 | Intr | oductio              | n                                          | 1  |  |  |  |  |
|---|------|----------------------|--------------------------------------------|----|--|--|--|--|
|   | 1.1  | Purpos               | se and structure of this report            | 1  |  |  |  |  |
|   | 1.2  | Definit              | tions, statistics used                     | 2  |  |  |  |  |
|   | 1.3  | The ne               | w EMEP grid                                | 4  |  |  |  |  |
|   |      | 1.3.1                | The reduced grid: EMEP0302                 | 5  |  |  |  |  |
|   | 1.4  | Count                | ry codes                                   | 5  |  |  |  |  |
|   | 1.5  | Other                | publications                               | 6  |  |  |  |  |
|   | Refe | erences.             | ·<br>· · · · · · · · · · · · · · · · · · · | 11 |  |  |  |  |
| I | Sta  | tus of               | air pollution                              | 13 |  |  |  |  |
| 2 | Stat | us of tra            | ansboundary air pollution in 2016          | 15 |  |  |  |  |
|   | 2.1  | Meteor               | rological conditions in 2016               | 15 |  |  |  |  |
|   |      | 2.1.1                | Temperature and precipitation in 2016      | 15 |  |  |  |  |
|   |      | 2.1.2                | 2016 compared to the 2000-2015 average     | 19 |  |  |  |  |
|   | 2.2  | Measu                | rement network 2016                        | 20 |  |  |  |  |
|   | 2.3  | Model                | setup for 2016 model runs                  | 21 |  |  |  |  |
|   | 2.4  | Air po               | llution in 2016                            | 21 |  |  |  |  |
|   |      | 2.4.1                | Ozone                                      | 21 |  |  |  |  |
|   |      | 2.4.2                | Particulate matter                         | 26 |  |  |  |  |
|   |      | 2.4.3                | Deposition of sulphur and nitrogen         | 32 |  |  |  |  |
|   |      | 2.4.4                | Model calculations for 2017                | 37 |  |  |  |  |
|   | Refe | erences.             |                                            | 39 |  |  |  |  |
| 3 | Emi  | Emissions for 2016 4 |                                            |    |  |  |  |  |
|   | 3.1  | Emissi               | ons for 2016                               | 41 |  |  |  |  |
|   |      | 3.1.1                | Reporting of emission inventories in 2018  | 42 |  |  |  |  |
|   |      | 3.1.2                | Black Carbon (BC) emissions                | 42 |  |  |  |  |
|   |      | 3.1.3                | EECCA countries – Status of reporting      | 44 |  |  |  |  |
|   |      | 3.1.4                | Emission trends in the EMEP area           | 46 |  |  |  |  |
|   |      | 3.1.5                | Gothenburg Protocol targets                | 50 |  |  |  |  |

| 53         a       56         gridded data       57         ution for 2000–2016       60                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a       56         gridded data       57         gridded data       59         ution for 2000–2016       60         .       61         .       62         for 2000 2016       63 |
| a       57         gridded data       59         ution for 2000–2016       60         .       61         .       62         for 2000 2016       63                               |
| gridded data       59         ution for 2000–2016       60                                                                                                                       |
| ation for 2000–2016       60                                                                                                                                                     |
| 61<br>                                                                                                                                                                           |
| for 2000 2016                                                                                                                                                                    |
| for 2000-2016 65                                                                                                                                                                 |
| 101 2000-2010 0.                                                                                                                                                                 |
|                                                                                                                                                                                  |
| levels for 2000-2016                                                                                                                                                             |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 73                                                                                                                                                                               |
| EMEP grid 75                                                                                                                                                                     |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| the source receptor matrices                                                                                                                                                     |
|                                                                                                                                                                                  |
| 83                                                                                                                                                                               |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| ent period.                                                                                                                                                                      |
| 99                                                                                                                                                                               |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| benefit                                                                                                                                                                          |
| trol $\ldots \ldots 102$                                                              |
| 2018                                                                                                                                                                             |
|                                                                                                                                                                                  |
| and Hyytiälä sites                                                                                                                                                               |
| and Hyytiälä sites       103                                                                                                                                                     |
|                                                                                                                                                                                  |

|                             | 8.1.2 Configuration                                                                                                                                                                                                                                                               | 110                                                  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                             | 8.1.3 Deposition                                                                                                                                                                                                                                                                  | 110                                                  |
|                             | 8.1.4 Emissions                                                                                                                                                                                                                                                                   | 110                                                  |
|                             | 8.1.5 Landcover                                                                                                                                                                                                                                                                   | 110                                                  |
|                             | 8.1.6 Meteorology                                                                                                                                                                                                                                                                 | 110                                                  |
|                             | 8.1.7 Vertical resolution                                                                                                                                                                                                                                                         | 111                                                  |
|                             | 8.2 Radiation issues                                                                                                                                                                                                                                                              | 112                                                  |
|                             | 8.3 Acknowledgments                                                                                                                                                                                                                                                               | 112                                                  |
|                             | References                                                                                                                                                                                                                                                                        | 115                                                  |
| 9                           | Developments in the monitoring network, data quality and database infrastruc                                                                                                                                                                                                      | :-                                                   |
|                             | ture                                                                                                                                                                                                                                                                              | 117                                                  |
|                             | 9.1 Compliance with the EMEP monitoring strategy                                                                                                                                                                                                                                  | 117                                                  |
|                             | 9.2 Updates in reporting templates and guidelines                                                                                                                                                                                                                                 | 119                                                  |
|                             | References                                                                                                                                                                                                                                                                        | 121                                                  |
|                             |                                                                                                                                                                                                                                                                                   |                                                      |
|                             |                                                                                                                                                                                                                                                                                   |                                                      |
| IV                          | 7 Appendices                                                                                                                                                                                                                                                                      | 123                                                  |
| IV<br>A                     | Appendices National emissions for 2016 in the EMEP domain                                                                                                                                                                                                                         | 123<br>A:1                                           |
| IV<br>A                     | Appendices National emissions for 2016 in the EMEP domain References                                                                                                                                                                                                              | <b>123</b><br>A:1<br>A:2                             |
| IV<br>A<br>B                | Appendices National emissions for 2016 in the EMEP domain References                                                                                                                                                                                                              | 123<br>A:1<br>A:2<br>B:1                             |
| IV<br>A<br>B                | Appendices         National emissions for 2016 in the EMEP domain         References         National emission trends         References         References                                                                                                                       | <b>123</b><br>A:1<br>A:2<br><b>B:1</b><br>B:2        |
| IV<br>A<br>B<br>C           | Appendices         National emissions for 2016 in the EMEP domain         References         National emission trends         References         References         Source-receptor tables for 2016                                                                               | 123<br>A:1<br>A:2<br>B:1<br>B:2<br>C:1               |
| IV<br>A<br>B<br>C<br>D      | Appendices         National emissions for 2016 in the EMEP domain         References                                                                                                                                                                                              | 123<br>A:1<br>A:2<br>B:1<br>B:2<br>C:1<br>D:1        |
| IV<br>A<br>B<br>C<br>D<br>E | Appendices         National emissions for 2016 in the EMEP domain         References         National emission trends         References         References         Source-receptor tables for 2016         Explanatory note on country reports for 2016         Model Evaluation | 123<br>A:1<br>A:2<br>B:1<br>B:2<br>C:1<br>D:1<br>E:1 |

# CHAPTER 1

# Introduction

## **1.1** Purpose and structure of this report

The mandate of the European Monitoring and Evaluation Programme (EMEP) is to provide sound scientific support to the Convention on Long-range Transboundary Air Pollution (LR-TAP), particularly in the areas of atmospheric monitoring and modelling, emission inventories, emission projections and integrated assessment. Each year EMEP provides information on transboundary pollution fluxes inside the EMEP area, relying on information on emission sources and monitoring results provided by the Parties to the LRTAP Convention.

The purpose of the annual EMEP status reports is to provide an overview of the status of transboundary air pollution in Europe, tracing progress towards existing emission control Protocols and supporting the design of new protocols, when necessary. An additional purpose of these reports is to identify problem areas, new aspects and findings that are relevant to the Convention.

The present report is divided into four parts. Part I presents the status of transboundary air pollution with respect to acidification, eutrophication, ground level ozone and particulate matter in Europe in 2016. Part II summarizes research activities of relevance to the EMEP programme, while Part III deals with technical developments going on within the centres.

Appendix A in Part IV contains information on the national total emissions of main pollutants and primary particles for 2016, while Appendix B shows the emission trends for the period of 2000–2016. Country-to-country source-receptor matrices with calculations of the transboundary contributions to pollution in different countries for 2016 are presented in Appendix C.

Appendix E introduces the model evaluation report for 2016 (Gauss et al. 2018c) which is available online and contains time series plots of acidifying and eutrophying components (Gauss et al. 2018b), ozone (Gauss et al. 2018a) and particulate matter (Tsyro et al. 2018). These plots are provided for all stations reporting to EMEP (with just a few exclusions due to data-capture or technical problems). This online information is complemented by numerical fields and other information on the EMEP website. The reader is encouraged to visit the website, http://www.emep.int, to access this additional information.

Appendix D describes the country reports which are issued as a supplement to the EMEP status reports.

## **1.2** Definitions, statistics used

For sulphur and nitrogen compounds, the basic units used throughout this report are  $\mu g$  (S or N)/m<sup>3</sup> for air concentrations and mg (S or N)/m<sup>2</sup> for depositions. Emission data, in particular in some of the Appendices, is given in Gg (SO<sub>2</sub>) and Gg (NO<sub>2</sub>) in order to keep consistency with reported values.

For ozone, the basic units used throughout this report are ppb (1 ppb = 1 part per billion by volume) or ppm (1 ppm = 1000 ppb). At 20°C and 1013 mb pressure, 1 ppb ozone is equivalent to 2.00  $\mu$ g m<sup>-3</sup>.

A number of statistics have been used to describe the distribution of ozone within each grid square:

- Mean of Daily Max. Ozone First we evaluate the maximum modelled concentration for each day, then we take either 6-monthly (1 April 30 September) or annual averages of these values.
- **SOMO35** The Sum of Ozone Means Over 35 ppb is the indicator for health impact assessment recommended by WHO. It is defined as the yearly sum of the daily maximum of 8-hour running average over 35 ppb. For each day the maximum of the running 8-hours average for  $O_3$  is selected and the values over 35 ppb are summed over the whole year.

If we let  $A_8^d$  denote the maximum 8-hourly average ozone on day d, during a year with  $N_y$  days ( $N_y$  = 365 or 366), then SOMO35 can be defined as:

$$SOMO35 = \sum_{d=1}^{d=N_y} \max(A_8^d - 35 \text{ ppb}, 0.0)$$

where the max function evaluates  $\max(A-B, 0)$  to A-B for A > B, or zero if  $A \le B$ , ensuring that only  $A_8^d$  values exceeding 35 ppb are included. The corresponding unit is ppb.days.

 $\mathbf{POD}_{Y}$  - Phyto-toxic ozone dose, is the accumulated stomatal ozone flux over a threshold Y, i.e.:

$$\text{POD}_Y = \int \max(F_{st} - Y, 0) \, dt \tag{1.1}$$

where stomatal flux  $F_{st}$ , and threshold, Y, are in nmol m<sup>-2</sup> s<sup>-1</sup>. This integral is evaluated over time, from the start of the growing season (SGS), to the end (EGS).

For the generic crop and forest species, the suffix *gen* can be applied, e.g.  $POD_{Y,gen}$  (or  $AF_{st}1.6_{gen}$ ) is used for forests. POD was introduced in 2009 as an easier and more descriptive term for the accumulated ozone flux. The definitions of AFst and POD are identical however, and are discussed further in Mills and Simpson (2010). See also Mills et al. (2011a,b) and Mills et al. (2018).

AOT40 - is the accumulated amount of ozone over the threshold value of 40 ppb, i.e..

 $AOT40 = \int \max(O_3 - 40 \text{ ppb}, 0.0) dt$ 

where the max function ensures that only ozone values exceeding 40 ppb are included. The integral is taken over time, namely the relevant growing season for the vegetation concerned. The corresponding unit are ppb.hours (abbreviated to ppb.h). The usage and definitions of AOT40 have changed over the years though, and also differ between UNECE and the EU. LRTAP (2009) give the latest definitions for UNECE work, and describes carefully how AOT40 values are best estimated for local conditions (using information on real growing seasons for example), and specific types of vegetation. Further, since  $O_3$  concentrations can have strong vertical gradients, it is important to specify the height of the  $O_3$  concentrations used. In previous EMEP work we have made use of modelled  $O_3$  from 1 m or 3 m height, the former being assumed close to the top of the vegetation, and the latter being closer to the height of  $O_3$  observations. In the Mapping Manual (LRTAP 2009) there is an increased emphasis on estimating AOT40 using ozone levels at the top of the vegetation canopy.

Although the EMEP MSC-W model now generates a number of AOT-related outputs, in accordance with the recommendations of LRTAP (2009) we will concentrate in this report on two definitions:

- **AOT40**<sup>*uc*</sup> AOT40 calculated for forests using estimates of  $O_3$  at forest-top (*uc*: uppercanopy). This AOT40 is that defined for forests by LRTAP (2009), but using a default growing season of April-September.
- **AOT40**<sup>*uc*</sup> AOT40 calculated for agricultural crops using estimates of  $O_3$  at the top of the crop. This AOT40 is close to that defined for agricultural crops by LRTAP (2009), but using a default growing season of May-July, and a default crop-height of 1 m.

In all cases only daylight hours are included, and for practical reasons we define daylight for the model outputs as the time when the solar zenith angle is equal to or less than 89°. (The proper UNECE definition uses clear-sky global radiation exceeding 50 W m<sup>-2</sup> to define daylight, whereas the EU AOT definitions use day hours from 08:00-20:00.). In the comparison of modelled and observed AOT40<sup>uc</sup><sub>f</sub> in chapter 2, we have used the EU AOT definitions of day hours from 08:00-20:00.

The AOT40 levels reflect interest in long-term ozone exposure which is considered important for vegetation - critical levels of 3 000 ppb.h have been suggested for agricultural crops and natural vegetation, and 5 000 ppb.h for forests (LRTAP 2009). Note that recent UNECE workshops have recommended that AOT40 concepts are replaced by ozone flux estimates for crops and forests. (See also Mills and Simpson 2010).

This report includes also concentrations of particulate matter (PM). The basic units throughout this report are  $\mu g \text{ m}^{-3}$  for PM concentrations and the following acronyms are used for different components to PM:

**PBAP** - primary biological aerosol particles describes airborne solid particles (dead or alive) that are or were derived from living organisms, including microorganisms and fragments of all varieties of living things (Matthias-Maser (1998)).

- **SOA** secondary organic aerosol, defined as the aerosol mass arising from the oxidation products of gas-phase organic species.
- SIA secondary inorganic aerosols, defined as the sum of sulphate  $(SO_4^{2-})$ , nitrate  $(NO_3^{-})$  and ammonium  $(NH_4^+)$ . In the EMEP MSC-W model SIA is calculated as the sum: SIA=  $SO_4^{2-} + NO_3^{-}$  (fine) +  $NO_3^{-}$  (coarse) +  $NH_4^+$ .

SS - sea salt.

- **PPM** denotes primary particulate matter, originating directly from anthropogenic emissions. One usually distinguishes between fine primary particulate matter,  $PPM_{2.5}$ , with dry aerosol diameters below 2.5  $\mu$ m and coarse primary particulate matter,  $PPM_{coarse}$  with dry aerosol diameters between 2.5  $\mu$ m and 10  $\mu$ m.
- $PM_{2.5}$  denotes fine particulate matter, defined as the integrated mass of aerosol with dry diameters up to 2.5  $\mu$ m. In the EMEP MSC-W model  $PM_{2.5}$  is calculated as  $PM_{2.5} = SO_4^{2-} + NO_3^-$  (fine) +  $NH_4^+ + SS$ (fine) +  $PPM_{2.5} + 0.27 NO_3^-$  (coarse).
- $PM_{coarse}$  denotes coarse particulate matter, defined as the integrated mass of aerosol with dry diameters between 2.5µm and 10µm. In the EMEP MSC-W model  $PM_{coarse}$  is calculated as  $PM_{coarse} = 0.33 \text{ NO}_3^-(\text{coarse}) + SS(\text{coarse}) + PPM_{coarse}$ .
- $PM_{10}$  denotes particulate matter, defined as the integrated mass of aerosol with dry diameters up to 10  $\mu$ m. In the EMEP MSC-W model PM<sub>10</sub> is calculated as PM<sub>10</sub> = PM<sub>2.5</sub>+PM<sub>coarse</sub>.

In addition to bias, correlation and root mean square the statistical parameter, index of agreement, are used to judge the model's agreement with measurements:

**IOA** - The index of agreement (IOA) is defined as follows (Willmott 1981, 1982):

$$IOA = 1 - \frac{\sum_{i=1}^{N} (m_i - o_i)^2}{\sum_{i=1}^{N} (|m_i - \bar{o}| + |o_i - \bar{o}|)^2}$$
(1.2)

where  $\overline{o}$  is the average observed value. Similarly to correlation, IOA can be used to assess agreement either spatially or temporally. When IOA is used in a spatial sense, N denotes the number of stations with measurements at one specific point in time, and  $m_i$ and  $o_i$  are the modelled and observed values at station *i*. For temporal IOA, N denotes the number of time steps with measurements, while  $m_i$  and  $o_i$  are the modelled and observed value at time step *i*. IOA varies between 0 and 1. A value of 1 corresponds to perfect agreement between model and observations, and 0 is the theoretical minimum.

# **1.3 The new EMEP grid**

At the  $36^{th}$  session of the EMEP Steering Body the EMEP Centres suggested to increase spatial resolution and projection of reported emissions from  $50 \times 50$  km polar stereographic EMEP grid to  $0.1^{\circ} \times 0.1^{\circ}$  longitude-latitude grid in a geographic coordinate system (WGS84). The new EMEP domain shown in Figure 1.1 will cover the geographic area between  $30^{\circ}$ N- $82^{\circ}$ N latitude and  $30^{\circ}$ W- $90^{\circ}$ E longitude. This domain represents a balance between political



Figure 1.1: The new EMEP domain covering the geographic area between  $30^{\circ}$ N- $82^{\circ}$ N latitude and  $30^{\circ}$ W- $90^{\circ}$ E longitude.

needs, scientific needs and technical feasibility. Parties are obliged to report gridded emissions in the new grid resolution from year 2017.

The higher resolution means an increase of grid cells from approximately 21500 cells in the  $50 \times 50$  km<sup>2</sup> grid to 624000 cells in the new longitude-latitude grid.

#### **1.3.1 The reduced grid: EMEP0302**

For practical purposes, a new coarser grid has also been defined. The EMEP0302 grid covers the same region as the new EMEP domain (Figure 1.1), but the spatial resolution is  $0.3^{\circ}$  in the longitude direction and  $0.2^{\circ}$  in the latitude direction. Each gridcell from the EMEP0302 grid covers exactly 6 gridcells from the  $0.1^{\circ} \times 0.1^{\circ}$  official grid.

## 1.4 Country codes

Several tables and graphs in this report make use of codes to denote countries and regions in the EMEP area. Table 1.1 provides an overview of these codes and lists the countries and regions included.

All 51 Parties to the LRTAP Convention, except two, are included in the analysis presented in this report. The Parties that are excluded of the analysis are Canada and the United States of America, because they lie outside the EMEP domain.

| Code | Country/Region                  |  | Code | Country/Region       |
|------|---------------------------------|--|------|----------------------|
| AL   | Albania                         |  | IS   | Iceland              |
| AM   | Armenia                         |  | IT   | Italy                |
| AST  | Remaining Asian areas           |  | KG   | Kyrgyzstan           |
| AT   | Austria                         |  | KZ   | Kazakhstan           |
| ATL  | Remaining NE. Atlantic Ocean    |  | LI   | Liechtenstein        |
| AZ   | Azerbaijan                      |  | LT   | Lithuania            |
| BA   | Bosnia and Herzegovina          |  | LU   | Luxembourg           |
| BAS  | Baltic Sea                      |  | LV   | Latvia               |
| BLS  | Black Sea                       |  | MC   | Monaco               |
| BE   | Belgium                         |  | MD   | Republic of Moldova  |
| BG   | Bulgaria                        |  | ME   | Montenegro           |
| BIC  | Boundary and Initial Conditions |  | MED  | Mediterranean Sea    |
| BY   | Belarus                         |  | MK   | The FYR of Macedonia |
| СН   | Switzerland                     |  | MT   | Malta                |
| CY   | Cyprus                          |  | NL   | Netherlands          |
| CZ   | Czech Republic                  |  | NO   | Norway               |
| DE   | Germany                         |  | NOA  | North Africa         |
| DK   | Denmark                         |  | NOS  | North Sea            |
| EE   | Estonia                         |  | PL   | Poland               |
| EXC  | EMEP land areas                 |  | PT   | Portugal             |
| ES   | Spain                           |  | RO   | Romania              |
| EU   | European Union (EU28)           |  | RS   | Serbia               |
| FI   | Finland                         |  | RU   | Russian Federation   |
| FR   | France                          |  | SE   | Sweden               |
| GB   | United Kingdom                  |  | SI   | Slovenia             |
| GE   | Georgia                         |  | SK   | Slovakia             |
| GL   | Greenland                       |  | TJ   | Tajikistan           |
| GR   | Greece                          |  | ТМ   | Turkmenistan         |
| HR   | Croatia                         |  | TR   | Turkey               |
| HU   | Hungary                         |  | UA   | Ukraine              |
| IE   | Ireland                         |  | UZ   | Uzbekistan           |

Table 1.1: Country/region codes used throughout this report.

# **1.5** Other publications

This report is complemented by a report on EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2016 (Gauss et al. 2018c), made available online, at www.emep.int.

A list of all associated technical reports and notes by the EMEP centres in 2018 (relevant for transboundary acidification, eutrophication, ozone and particulate matter) follows at the end of this section.

#### **Peer-reviewed publications**

The following scientific papers of relevance to transboundary acidification, eutrophication, ground level ozone and particulate matter, involving EMEP/MSC-W and EMEP/CCC staff, have become available in 2017:

- Backman, J., Schmeisser, L., Virkkula, A., Ogren, J. A., Asmi, E., Starkweather, S., Sharma, S., Eleftheriadis, K., Uttal, T., Jefferson, A., Bergin, M., Makshtas, A., Tunved, P., Fiebig, M. (2017). On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic. Atmospheric Measurement Techniques, 10, 5039-5062. DOI:10.5194/amt-10-5039-2017
- Baklanov, A., Brunner, D., Carmichael, G. R., Flemming, J., Freitas, S., Gauss, M., Hov, Ø., Mathur, R. R., Schlünzen, K. H., Seigneur, C., Vogel, B. Key Issues for Seamless Integrated Chemistry-Meteorology Modeling. Bulletin of The American Meteorological Society - (BAMS), 2017. DOI: 10.1175/BAMS-D-15-00166.1
- Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., Tsyro, S. G. Investigation of global particulate nitrate from the AeroCom phase III experiment. Atmospheric Chemistry and Physics, 17 (21), p.12911-12940, 2017. DOI: 10.5194/acp-17-12911-2017
- Colette, A., Andersson, C., Manders, A., Mar, K., Mircea, M., Pay, M.-T., Raffort, V., Tsyro, S. G., Cuvelier, C., Adani, M., Bessagnet, B., Bergström, R., Briganti, G., Butler, T., Cappelletti, A., Couvidat, F., D'Isidoro, M., Doumbia, T., Fagerli, H., Granier, C., Heyes, C., Klimont, Z., Ojha, N., Otero, N., Schaap, M., Sindelarova, K., Stegehuis, A. I., Roustan, Y., Vautard, R., Van Meijgaard, E., Garcia, V. M., Wind, P. A. EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990-2010. Geoscientific Model Development, 10 (9) p.3255-3276, 2017. DOI: 10.5194/gmd-10-3255-2017
- Conen, F., Eckhardt, S., Gundersen, H., Stohl, A., Yttri, K. E. (2017). Rainfall drives atmospheric ice-nucleating particles in the coastal climate of southern Norway. Atmospheric Chemistry and Physics, 17, 11065-11073. DOI: 10.5194/acp-17-11065-2017
- de Vries, W., Posch, M., Simpson, D., Reinds, G. J. Modelling long-term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems. Science of the Total Environment, 605-606, p.1097-1116, 2017. DOI: 10.1016/j.scitotenv.2017.06.132
- Engardt, M., Simpson, D., Schwikowski, M., Granat, L. Deposition of sulphur and nitrogen in Europe 1900-2050. Model calculations and comparison to historical observations. Tellus. Series B, Chemical and physical meteorology, 69 (1), 2017. DOI: 10.1080/16000889.2017.1328945
- Franz, M., Simpson, D., Arneth, A., Zaehle, S. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model. Biogeosciences, 14 (1), p. 45-71, 2017. DOI: 10.5194/bg-14-45-2017
- Glasius, M., Hansen, A. M. K., Claeys, M., Henzing, J.S, Jedynska, A. D., Kasper-Giebl, A., Kistler, M., Kristensen, K., Martinsson, J., Maenhaut, W., Nøjgaard, J.K., Spindler, G., Stenström, K. E., Swietlicki, E., Szidat, S., Simpson, D., Yttri, K. E. Composition and sources of carbonaceous aerosols in Northern Europe during winter. Atmospheric Environment, 173, p. 127-141, 2017. DOI: 10.1016/j.atmosenv.2017.11.005

- Hallquist, M., Munthe, J., Hu, M., Wang, T., Chan, C. K, Gao, J., Boman, J., Guo, S., Hallquist, Å. M, Mellqvist, J., Moldanova, J., Pathak, R. K., Pettersson, J. B. C., Pleijel, H., Simpson, D., Thynell, M. Photochemical smog in China: scientific challenges and implications for air-quality policies. National Science Review, 3 (4), p. 401-403, 2017. DOI: 10.1093/nsr/nww080
- Huang, M., Carmichael, G. R., Pierce, RB; Jo, D., Park, R., Flemming, J., Emmons, L. K., Bowman, K. W., Henze, D. K., Davila, Y., Sudo, K., Jonson, J. E., Lund, M. T., Keating, T. J., Oetjen, H., Payne, V. H. Impact of intercontinental pollution transport on North American ozone air pollution: An HTAP phase 2 multi-model study. Atmospheric Chemistry and Physics, 17 (9), p.5721-5750, 2017. DOI: 10.5194/acp-17-5721-2017
- Jonson, J. E., Borken-Kleefeld, J., Simpson, D., Nyiri, A., Posch, M., Heyes, C. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environmental Research Letters, 12 (9), 2017. DOI: 10.1088/1748-9326/aa8850
- Lacressonnière, G., Watson, L., Gauss, M., Engardt, M., Andersson, C., Beekmann, M., Colette, A., Forêt, G., Josse, B., Marécal, V., Nyiri, A., Siour, G., Sobolowski, S. P., Vautard, R. Particulate matter air pollution in Europe in a +2 °C warming world. Atmospheric Environment, 154, p. 129-140, 2017. DOI: 10.1016/j.atmosenv.2017.01.037
- Myhre, G., Aas, W., Cherian, R., Collins, W., Faluvegi, G., Flanner, M., Forster, P., Hodnebrog, Ø., Klimont, Z., Lund, M. T., Mülmenstädt, J., Lund Myhre, C., Olivié, D., Prather, M., Quaas, J., Samset, B. H., Schnell, J. L., Schulz, M., Shindell, D., Skeie, R. B., Takemura, T., Tsyro, S. (2017). Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015. Atmospheric Chemistry and Physics, 17, 2709-2720. DOI: 10.5194/acp-17-2709-2017
- Nickel, S., Schroder, W., Wosniok, W., Harmens, H., Frontasyeva, M. V., Alber, R., Aleksiayenak, J., Barandovski, L., Blum, O., Danielsson, H., de Temmermann, L., Dunaev, A. M., Fagerli, H., Godzik, B., Ilyin, I., Jonkers, S., Jeran, Z., Pihl Karlsson, G., Lazo, P., Leblond, S., Liiv, S., Magnusson, S. H., Mankovska, B., Martinez-Abaigar, J., Piispanen, J., Poikolainen, J., Popescu, I. V., Qarri, F., Radnovic, D., Santamaria, J. M., Schaap, M., Skudnik, M., Spiric, Z., Stafilov, T., Steinnes, E., Stihi, C., Suchara, I., Thoni, L., Uggerud, H. T., Zechmeister, H. G. Modelling and mapping heavy metal and nitrogen concentrations in moss in 2010 throughout Europe by applying Random Forests models. Atmospheric Environment, 156, p.146-159, 2017. DOI: 10.1016/j.atmosenv. 2017.02.032
- Popovicheva, O. B., Evangeliou, N., Eleftheriadis, K., Kalogridis, A. C., Sitnikov, N., Eckhardt, S., Stohl, A. (2017). Black carbon sources constrained by observations in the Russian high Arctic. Environmental Science & Technology, 51, 3871-3879. DOI: 10.1021/acs.est.6b05832
- Schmale, J., Henning, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Jefferson, A., Park, M., Schlag, P., Kristensson, A., Iwamoto, Y., Pringle, K., Reddington, C., Aalto, P., Äijälä, M., Baltensperger, U., Bialek, J., Birmili, W., Bukowiecki, N., Ehn, M., Fjæraa, A. M., Fiebig, M., Frank, G., Fröhlich, R., Frumau, A., Furuya, M., Hammer, E., Heikkinen, L., Herrmann, E., Holzinger, R., Hyono, H., Kanakidou, M., Kiendler-Scharr, A., Kinouchi, K., Kos, G., Kulmala, M., Mihalopoulos, N., Motos, G., Nenes, A., O'Dowd, C., Paramonov, M., Petäjä, T., Picard, D., Poulain, L., Prévôt, A. S. H., Slowik, J., Sonntag, A., Swietlicki, E., Svenningsson, B., Tsurumaru, H., Wiedensohler, A., Wittbom, C., Ogren, J. A., Matsuki, A., Yum, S. S., Myhre, C. L., Carslaw, K., Stratmann, F., Gysel, M. (2017). Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 4, 170003, DOI: 10.1038/sdata.2017.3

- Schultz, M. G., Schröder, S., Lyapina, O., Cooper, O., Galbally, I., Petropavlovskikh, I., von Schneidemesser, E., Tanimoto, H., Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt, P., Feigenspahn, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D., Kjeld, P. C., Koide, H. Lear, G., Tarasick, D., Ueno, M., Wallasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M., Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., Ancellet, G., Apadula, F., Artaxo, P., Barlasina, M., Bogucka, M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agulló, E., Cupeiro, M., Degorska, A., Ding, A., Fröhlich, M., Frolova, M., Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V., Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla, R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D., Lam, K.-S., Laurila, T., Lee, H., Levy, I., Mazzoleni, C., Mazzoleni, L., McClure-Begley, A., Mohamad, M., Murovic, M., Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid, N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, I., Simmonds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W., Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suharguniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xiaobin, X., Xue, L., Zhiqiang, M. (2017). Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elementa: Science of the Anthropocene, 5, 58, DOI: 10.1525/elementa.244
- Schutgens, N. A. J., Tsyro, S. G., Gryspeerdt, E., Goto, D., Weigum, N., Schulz, M., Stier, P. On the spatio-temporal representativeness of observations. Atmospheric Chemistry and Physics, 17 (16), p.9761-9780, 2017. DOI: 10.5194/acp-17-9761-2017
- Vivanco, M. G., Bessagnet, B., Cuvelier, C., Theobald, M. R., Tsyro, S. G., Pirovano, G., Aulinger, A., Bieser, J., Calori, G., Ciarelli, G., Manders, A. M., Mircea, M., Aksoyoglu, S. A., Briganti, G., Cappelletti, A., Colette, A., Couvidat, F., D'Isidoro, M., Kranenburg, R., Meleux, F., Menut, L., Pay, M.-T., Rouil, L., Silibello, C., Thunis, P., Ung, A. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project. Atmospheric Environment, 151, p. 152-175, 2017. DOI: 10.1016/j.atmosenv.2016.11.042
- Vogel, A., Diplas, S., Durant, A. J., Azar, A. S., Sunding, M. F., Rose, W. I., Sytchkova, A., Bonadonna, C., Krüger, K., Stohl, A. (2017). Reference data set of volcanic ash physicochemical and optical properties. Journal of Geophysical Research - Atmospheres, 122, 9485-9514. DOI: 10.1002/ 2016JD026328
- Zamora, L. M., Kahn, R. A., Eckhardt, S., McComiskey, A., Sawamura, P., Moore, R., Stohl, A. (2017). Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds. Atmospheric Chemistry and Physics, 17, 7311-7332. DOI: 10.5194/acp-17-7311-2017

#### Associated EMEP reports and notes in 2018

#### Joint reports

- Transboundary particulate matter, photo-oxidants, acidification and eutrophication components. Joint MSC-W & CCC & CEIP Report. EMEP Status Report 1/2018
- EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2016. Supplementary material to EMEP Status Report 1/2018

#### **CCC Technical and Data reports**

Anne-Gunn Hjellbrekke. Data Report 2016 Particulate matter, carbonaceous and inorganic compounds. EMEP/CCC-Report 1/2018 Anne-Gunn Hjellbrekke and Sverre Solberg. Ozone measurements 2016. EMEP/CCC-Report 2/2018

- Wenche Aas, Knut Breivik and Pernilla Bohlin Nizzetto. Heavy metals and POP measurements 2016. EMEP/CCC-Report 3/2018
- Sverre Solberg, Anja Claude and Stefan Reimann. VOC measurements 2016. EMEP/CCC-Report 4/2018

#### **CEIP** Technical and Data reports

Mareckova, K., Pinterits, M., Ullrich, B., Burgstaller, J., Wankmüller, R., Tista, M. Inventory review. Review of emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded and LPS data. Joint CEIP/EEA Report. EMEP/CEIP Technical Report 1/2018

## References

- Gauss, M., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: Ozone, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018a.
- Gauss, M., Tsyro, S., Fagerli, H., Hjellbrekke, A.-G., and Aas, W.: Acidifying and eutrophying components, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018b.
- Gauss, M., Tsyro, S., Fagerli, H., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2016., Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018c.
- LRTAP: Mapping critical levels for vegetation, in: Manual on Methodologies and Criteria for Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. Revision of 2009, edited by Mills, G., UNECE Convention on Long-range Transboundary Air Pollution. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops, updated version available at www.icpmapping.com/, 2009.
- Matthias-Maser, S.: Primary biological aerosol particles: Their significance, sources, sampling methods and size distribution in the atmosphere, in: Atmospheric particles, edited by Harrison, R. M. and van Grieken, R., pp. 349–368, John Wiley & Sons, Chichester, 1998.
- Mills, G. and Simpson, D.: New flux-based critical levels for ozone-efefcts on vegetation, in: Transboundary acidification, eutrophication and ground level ozone in Europe. EMEP Status Report 1/2010, pp. 123–126, The Norwegian Meteorological Institute, Oslo, Norway, 2010.
- Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., and Büker, P.: Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990-2006) in relation to AOT40- and flux-based risk maps, Global Change Biology, 17, 592–613, doi:10.1111/j.1365-2486.2010.02217.x, 2011a.
- Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., Grünhage, L., Fernández, I. G., Harmens, H., Hayes, F., Karlsson, P.-E., and Simpson, D.: New stomatal flux-based critical levels for ozone effects on vegetation, Atmos. Environ., 45, 5064 5068, doi:10.1016/j.atmosenv.2011.06.009, 2011b.
- Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, William, J., Dentener, F., Berg, M., Agrawal, M., Agrawal, S., Ainsworth, E. A., Büker, P., Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., and Dingenen, R.: Ozone pollution will compromise efforts to increase global wheat production, Global Change Biol., 24, 3560–3574, doi:10.1111/gcb.14157, URL https: //onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14157, 2018.
- Tsyro, S., Gauss, M., Hjellbrekke, A.-G., and Aas, W.: PM10, PM2.5 and individual aerosol components, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018.

Willmott, C. J.: On the validation of models, Physical Geography, 2, 184–194, 1981.

Willmott, C. J.: Some Comments on the Evaluation of Model Performance, Bulletin American Meteorological Society, 63, 1309–1313, doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2, 1982.

# Part I

# Status of air pollution

# CHAPTER 2

# Status of transboundary air pollution in 2016

#### Svetlana Tsyro, Wenche Aas, Sverre Solberg, Anna Benedictow, Hilde Fagerli and Maximilian Posch

This chapter describes the status of transboundary air pollution in 2016. A short summary of the meteorological conditions for 2016 is presented and the EMEP network of measurements in 2016 is briefly described. Thereafter, the status of air pollution and exceedances in 2016 is discussed.

## 2.1 Meteorological conditions in 2016

Air pollution is significantly influenced by both emissions and weather conditions. Temperature and precipitation are important factors and therefore a short summary describing the situation in 2016 as reported by the meteorological institutes in European and EECCA countries is given first.

The meteorological data to drive the EMEP MSC-W air quality model have been generated by the Integrated Forecast System model (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), hereafter referred to as the ECMWF-IFS model. In the meteorological community the ECMWF-IFS model is considered as state-of-the-art, and MSC-W has been using this model in hindcast mode to generate meteorological reanalyses for the year to be studied (Cycle 40r1 is the model version used for the year 2016 model run). Next section show temperature and precipitation in 2016 compared to the 2000-2015 average based on the same ECMWF-IFS model hindcast setup.

#### 2.1.1 Temperature and precipitation in 2016

Globally the 2016 mean temperature was reported as the highest on record by the World Meteorological Organisation (WMO 2017). It was strongly influenced by the El Niño event, especially in the first half of the year. For the cold period (Jan-Mar and Oct-Dec) in 2016,

NOAA reported extremely high temperatures due to advection of warm air into the Arctic from mid-latitudes explained by the Arctic and Mid-latitudes Connections (Overland et al. 2016). Year 2016 was the third warmest in Europe and the warmest on record in the European part of Russia (Blunden and Arndt 2017). For Europe, including the European part of Russia, 2016 was characterised by very high late summer and early autumn temperatures, but also exceptional high temperatures in the beginning of the year.

WMO reported that global precipitation was influenced by the transition from El Niño to La Niña halfway through the year 2016, with strong seasonal contrasts still resulting in annual totals close to average (WMO 2017). The global high temperatures were combined with extensive drought, and for any given month during 2016, 12% or more of the global land cover experienced severe drought conditions, the longest such recorded stretch, reported by NOAA (Blunden and Arndt 2017). However, the winter was very wet in western Europe, followed by a wet spring in central Europe. The summer was wet in eastern Europe and the autumn was wet in southern Europe, but very dry elsewhere. In Europe the year ended with extremely dry conditions everywhere in December.

A well established Icelandic low and Azores high brought warm Atlantic air into large parts of Europe in the beginning of the year. France reported its warmest winter since measurements started, and Switzerland and the United Kingdom reported their second and third warmest winter on record. Caused by a lack of inflowing cold Arctic air and a weak winter blocking high over Russia, Belarus reported its warmest winter since 1891 and the second warmest in western Russia since 1936. Due to a warm winter, snow was replaced by above normal rain in central Europe, central and southern Russia, the Baltic countries, Azerbaijan and west Kazakhstan. The 2015/16 winter was the wettest recorded in Ireland and 2nd wettest since 1910 in the United Kingdom. Spain and France experienced record high temperatures in January, but Scandinavia had for a shorter period lower temperatures. The Mediterranean region was influenced by a positive temperature anomaly extending from Russia and the highest temperatures in 50 years were registered in Greece, and Austria had its second warmest February since 1858. In January the northwestern Iberian Peninsula received abundant rainfalls and France received more than normal precipitation. February was the wettest on record for Austria and 2nd wettest in Finland, while southern Europe had dry conditions.

In spring the warm Atlantic air entered into a more southerly path reaching the eastern Mediterranean. March was still warm in Belarus, western Kazakhstan, Germany and the Nordic countries, but the United Kingdom, France and Spain were colder than their climatological average. Spain and France remained colder than usual throughout the season. In April temperatures were still low in the United Kingdom and Ireland, but higher than normal in Iceland. A sudden late spring frost hit France, Germany, Switzerland and Poland in late April after higher than normal temperatures earlier in that month. May was the third warmest in Denmark since 1874, and in Finland since 1908, and also warmer than normal in Russia and Latvia. The recurring inflow of humid Atlantic air masses in spring, supported by low pressure systems over Scandinavia and the Mediterranean Sea caused strong rainfalls in France, Belgium, the Netherlands and the western Iberian Peninsula. France received more rain in spring than in the last 50 years with May being the wettest of the spring months. The Nordic countries and central Europe experienced a deficit in spring rainfall. During spring the cyclonic activity moved to the Black Sea and brought above normal precipitation to southern Italy, Malta, Greece, Bulgaria, northern Turkey and western Kazakhstan.

A high pressure system developed west of the Iberian peninsula in the summer as the Azores high strengthened during July and August. Subtropical air was transported to northeast



(b)  $\Delta$  precipitation (2016-climavg)

Figure 2.1: Meteorological conditions in 2016 compared to the 2000-2015 average (climavg) for: (a) Annual mean temperature at 2m [K] and (b) Annual precipitation [mm]. The meteorological data have been calculated with the ECMWF-IFS model.

Europe. Northwestern and southern Russia, northern Scandinavia and the Baltic countries had above average precipitation amounts, and the moist flows also reached Germany and Switzerland. Belgium registered its highest June precipitation since 1981. Summer rainfall in Finland was the 3rd highest ever recorded, and northern Switzerland registered its highest amount of precipitation in the first half of the year since 1864. Flooding was reported in northern France, Germany, Ireland, the United Kingdom and northern Switzerland, whereas southern France and the Iberian Peninsula suffered drought conditions. Portugal reported one of the five driest summers and the 2nd warmest summer since 1931. It was the 3rd warmest summer in Spain and the warmest on record in Russia. June was the 2nd warmest in the United Kingdom since 1910 and Cyprus was warmer than normal. The overall summer temperatures were close to normal in Scandinavia, central and eastern Europe. In the beginning of June a heatwave occurred in Denmark, and in July short heatwaves took place in the United Kingdom and in the European part of Russia. In June and July convective activity in the Mediterranean brought above normal rainfalls and floods to southern Italy, Macedonia, Greece and eastern Turkey. Temperatures were extremely high in western Kazakhstan, Armenia, Georgia, Azerbaijan, Turkey and Bulgaria in August. At the same time August was the warmest on record for Russia. An anticyclone over central Europe towards the end of August caused a heatwave in

Germany and higher than usual temperatures in France, Switzerland and the United Kingdom, whereas Hungary and Austria were colder than normal. A high pressure system over central Europe in July caused the driest August on record in France, whereas Germany, Ukraine, Bulgaria and western Turkey had precipitation deficits. Western Kazakhstan received large amounts of rain in June and July, but almost no rain in August.



(a)  $\Delta$ temperature at 2m (AprSep 2016-climavg)



(b)  $\Delta$ temperature at 2m (OctMar 2016-climavg)

Figure 2.2: Meteorological conditions in 2016 compared to the 2000-2015 average (climavg) for: (a) Summer (April-September) temperature [K], (b) Winter (January-March and October-December) temperature [K]. The meteorological data have been calculated with the ECMWF-IFS model.

The beginning of the autumn was still affected by high pressure systems over Europe, the heat prevailed into the autumn in western and central Europe and dry conditions dominated most of Europe, northern Russia and Turkey. Spain and Portugal were experiencing heat-waves in the beginning of September. September was the warmest recorded in Denmark since 1874 and in Norway since 1900, the 2nd warmest in the United Kingdom since 1910, the 3rd warmest in France since 1900 and 4th warmest in Switzerland since 1864. Also Germany, Slovakia and the Czech Republic were unusually warm in the beginning of the autumn, but the conditions were cooler in October and November over most of Europe and Russia. Finland registered its driest October in 55 years, Norway its 4th driest. Conditions were also extremely dry in the United Kingdom and France. In the Balkans, eastern Europe and southern Italy the conditions were very wet, especially in October and November. In the middle of November storms formed over the Atlantic, bringing wet and windy weather to Europe

with severe rainfalls in the United Kingdom, Spain and northern Italy, and heavy snowfall in Sweden.

December was dry in Europe and Russia caused by an omega blocking pattern centred over central Europe. France and Austria registered their driest December on record, and drier than normal conditions were reported in Germany, Romania, Hungary, northern Spain, Italy, the Balkan countries, Greece and western Turkey. At the same time, heavy rainfall occurred in southern Spain, Crete, central Turkey, northwestern Russia and western Kazakhstan. The year ended with lower than average temperatures in countries around the Caspian Sea (West Kazakhstan, Armenia, Georgia and Azerbaijan) and central Europe, but warmer in northern and southern Europe influenced by the central Europe high. Denmark was warmer in December (6th warmest since 1874) than in November.

#### 2.1.2 2016 compared to the 2000-2015 average

Calculations of meteorological data have been made with the ECMWF-IFS model with virtually the same model setup for the years 2000-2016, including also 2017. Here the 2000-2015 model calculated climatology is compared to 2016.



(a)  $\Delta$  precipitation (AprSep 2015-climavg)



(b)  $\Delta$ precipitation (OctMar 2015-climavg)

Figure 2.3: Meteorological conditions in 2016 compared to the 2000-2015 average (climavg) for: (a) Summer (April-September) precipitation [mm], (b) Winter (January-March and October-December) precipitation [mm]. The meteorological data have been calculated with the ECMWF-IFS model.

Compared to the 2000-2015 average, higher temperatures in 2016 are clearly seen in Figure 2.1 (a) especially over the Arctic region, but also over northern, eastern and southern Europe. The 2016 summer months (April-September) compared to the 2000-2015 average in Figure 2.2 (a) show higher temperatures in northern, southwestern and eastern Europe and lower temperatures in southern and western central Europe. Figure 2.2 (b) highlights that the 2016 cold period (January-March and October-December) differs from the 2000-2015 average, as it was strongly influenced by the exceptionally warm weather over the Arctic region, but also the relatively cold spring in western Europe had large effects on the annual temperature.

Figure 2.1 (b) shows that southern, eastern and northeastern Europe received larger amounts of precipitation than the 2000-2015 average, whereas central and western Europe received far less. Compared to the 2000-2015 average, the 2016 summer months (April-September) (Figure 2.3 (a)) in northeastern, eastern and south central Europe and the European part of Russia were wet, while northwestern and central Europe were very dry during the same period. Figure 2.3 (b) show that for the 2016 winter months (January-March and October-December) precipitation was higher in southeastern and southwestern Europe and lower in northern Europe and the northern European part of Russia compared to the 2000-2015 average.

### 2.2 Measurement network 2016

In 2016, a total of 32 Parties reported measurement data of inorganic components, particulate matter and/or ozone to EMEP from altogether 161 sites, which are the relevant components for level 1 sites (UNECE 2009). All data are available from the EBAS database (http://ebas.nilu.no/) and are also reported separately in technical reports by EMEP/CCC (Hjellbrekke 2018, Hjellbrekke and Solberg 2018). Figure 2.4 shows an overview of the spatial distribution of the sites reporting data for inorganic ions in air and precipitation, particulate matter and ozone in 2016.



Figure 2.4: EMEP measurement network for main components (left), particulate matter (middle) and ozone (right) in 2016

130 sites reported measurements of inorganic ions in precipitation and/or main components in air. However, not all of these sites were co-located as illustrated in Figure 2.4. There were 73 sites with measurements in both air and precipitation. The network of ozone measurements in EMEP included 139 sites. There were 70 sites measuring either  $PM_{10}$  or  $PM_{2.5}$ mass. 50 of these sites measured both size fractions, as recommended in the EMEP Monitoring strategy (UNECE 2009).
The stations measuring EMEP level 2 variables are shown in Figure 9.2. Compliance with the monitoring obligations, and the development of the programme during the last decade is discussed in Chapter 9.1.

# 2.3 Model setup for 2016 model runs

The EMEP MSC-W model version rv4.17a has been used for the 2016 model runs. The horizontal resolution is  $0.1^{\circ} \times 0.1^{\circ}$ , with 20 vertical layers (the lowest with a height of approximately 50 meters) as discussed in chapter 8.

Meteorology, emissions, boundary conditions and forest fires for 2016 have been used as input (for a description of these input data see Simpson et al. 2012). DMS emissions are created 'on-the-fly', e.g. they are meteorology dependent (see Chapter 9 in EMEP Status Report 1/2016). For international shipping emissions data from FMI (based on AIS data) for 2015 have been applied as 2016 data were not yet available (see Chapter 3).

# 2.4 Air pollution in 2016

#### 2.4.1 Ozone

The ozone observed at a surface station is the net result of various physio-chemical processes; surface dry deposition and uptake in vegetation, titration by nearby  $NO_x$  emissions, regional photochemical ozone formation and atmospheric transport of baseline ozone levels, each of which may have seasonal and diurnal systematic variations. Episodes with elevated levels of ozone are observed during the summer half year when certain meteorological situations (dry, sunny, cyclonic stable weather) favour the formation of ozone over the European continent.

Figure 2.5 shows various modelled ozone metrics for 2016 with the corresponding metrics based on the EMEP measurement sites plotted on top of the maps. Figure 2.6 shows similar plots with data from Airbase measurement sites. Note that most of the EMEP sites are also classified as Airbase sites and thus included in Figure 2.6 as well. Only stations located below 500 m above see level (asl) were used in this comparison to avoid uncertainties related to the extraction of model data in regions with complex topography. The maps show a) the mean of the daily max concentration for the period April-September, b) SOMO35, c) 6-months AOT40 for forests (April-September) using the hours between 08 and 20 and d) POD<sub>1</sub> (only for Figure 2.5). POD<sub>1</sub> could not be calculated from the ozone monitoring data directly and are thus not given in Figure 2.6.

It can be noted that  $POD_1$  values are substantially lower than those presented with model version rv4.15 in Status Report 1/2017, despite AOT40 levels being rather similar. The major reason for this difference is the change in radiation scheme, and discovery of a bug in the older scheme. As explained in Chapter 8, these changes seem to cause substantial impacts on POD<sub>1</sub> for forests but not on O<sub>3</sub> or even POD<sub>3</sub> for crops.

The mean daily max  $O_3$ , SOMO35 and AOT40 all show a distinct gradient with levels increasing from north to south, a well established feature for ozone in general reflecting the dependency of ozone on the photochemical conditions. Ozone formation is promoted by solar radiation and high temperatures. The highest levels of these ozone metrics are predicted over the Mediterranean Sea and in the southeast corner of the model grid.



(a) Max. O<sub>3</sub>



(b) SOMO35



(c) AOT40



(d) POD1

Figure 2.5: Model results and observations at EMEP stations (triangles) for mean of daily maximum ozone concentrations (ppb, April-September), SOMO35 [ppd.days], AOT40 [ppb.hours] for forests and POD<sub>1</sub> for forests [mmol  $m^{-2}$ ] in 2016. Only data from measurement sites below 500 meter above sea level are shown.



(c) AOT40

Figure 2.6: Model results and observations at Airbase stations (triangles) for mean of daily maximum ozone concentrations (ppb, April-September), SOMO35 [ppd.days], AOT40 [ppb.hours] for forests in 2016. Only data from measurement sites below 500 meter above sea level are shown.

The measurement network are limited to the continental western part of the model domain with no valid data in Belarus, Ukraine, Turkey or the area further east.

For the region covered by the monitoring sites, the pattern with increased levels to the south with maximum levels near the Mediterranean is seen in the measurement data as well as the model. The geographical pattern in the measured values is fairly well reflected by the model results for all these three metrics. In particular, the modelled mean daily max for the summer half year agrees very well with the measured values except for an underestimation in a few regions, mainly in the Mediterranean. Particularly high levels are predicted by the

model in the southeast, but due to the lack of monitoring sites here these levels could not be validated.

A good agreement between modelled and observed levels of SOMO35 is also seen from Figure 2.5 and Figure 2.6. With respect to AOT40, the results shown in Figure 2.5 and Figure 2.6 indicate that the model tends to overestimate this metric in many regions compared to what is observed. It should be noted that the  $O_3$  metrics such as AOT40 are very sensitive to the calculation of vertical  $O_3$  gradients between the middle of the surface layer and the 3m height used for comparison with measurements (Tuovinen et al. 2007) and thus more difficult to compare with measurement data than e.g. the mean daily maximum. Indeed, the formulation we use (Simpson et al. 2012) is probably better suited to a first model layer of 90m height (since we equate the centre of this, ca. 45m, with a 'blending-height') than to a first level of 50m height (as used throughout this report), and probably needs reformulating for the new resolution. For this reason, it seems premature to compare the modelled AOT40 values with critical levels; this work will continue once the characteristics of the new resolution have been studied and accounted for in more detail.

The modelled  $POD_1$  pattern differs from the other metrics reflecting the influence of additional parameters such as plant physiology, soil moisture, etc. and is a metric more indicative of the direct impact of ozone on vegetation than e.g. AOT40. The  $POD_1$  field could however not be validated by the EMEP ozone measurement data alone.

SOMO35 is an indicator for health impact assessment recommended by WHO, and the results given in Figure 2.5 and Figure 2.6 indicates that the health risk associated with surface ozone increased from northern to southern Europe in 2016. SOMO35 is a health risk indicator without any specific threshold or limit value. AOT40 and POD<sub>1</sub> are indicators for effects on vegetation. UN-ECE's limit values for forests is 5000 ppb hours, and the measurements given in Figure 2.5 and Figure 2.6 indicate that this level was exceeded in most of the European continent in 2016, whereas it was not exceeded in Scandinavia or the British Isles. As mentioned, the model predicts larger areas with exceedances than the measurements. For POD<sub>1</sub> the limit value depends on the species and Mills et al (2011) give a value of 4 for birch and beech and 8 for Norway spruce. The results in Figure 2.5 indicate that both these limit values were exceeded in most of Europe. The modelled levels of POD<sub>1</sub> can however not be validated by observations.

A more detailed comparison between model and measurements for ozone for the year 2016 can be found in Gauss et al. (2018a).

#### **Ozone episodes in 2016**

The CAMS interim annual assessment report for 2016 (Tarrason et al. 2016) presented various episodes of  $O_3$  and PM and thus we don't repeat these in the present report. In general, there were fewer episodes and lower  $O_3$  levels in 2016 compared to 2015. Based on the EMEP observational data, we identified episodes of elevated ozone during 23-24 June, 18-21 July, 23-27 August and 11-14 September. In the following we present plots for the latter of these episodes.

#### 11 - 14 September

Episodes of high ozone levels in September are rare, partly because the baseline level of  $O_3$  is low at this time of the year. The period 11-14 September 2016 was thus an unusual event



Figure 2.7: Modelled and measured daily max ozone (ppb) 12 September 2016. Data from EMEP and Airbase sites below 500 m asl are shown.



Figure 2.8: Modelled and measured daily max ozone (ppb) 14 September 2016. Data from EMEP and Airbase sites below 500 m asl are shown.

with several monitoring sites having their annual peak ozone level during these days including levels above the EU information threshold of 180  $\mu$ g m<sup>-3</sup>. By the start of the period a cold front was stretching from Spain over Ireland and into the North Sea, and a weak low was

formed on the front just west of France. The frontal zone moved slowly to the east leading to the advection of very warm air masses from the south into central Europe. Record-high temperatures (well above  $30^{\circ}$ C) were recorded, as well as record-high levels of ozone the following days. The model results as well as the measurement data show the extent of the region with high ozone levels on 12 and 14 September (Figure 2.7 and Figure 2.8). These results indicate a very good agreement between the modelled and measured levels, both with respect to the location of the ozone plume and the concentration levels.

#### 2.4.2 Particulate matter

Maps of annual mean concentrations of  $PM_{10}$  and  $PM_{2.5}$  in 2016, calculated by the EMEP MSC-W model are presented in Figure 2.9. The figures also show annual mean  $PM_{10}$  and  $PM_{2.5}$  concentrations observed at EMEP monitoring network, represented by colour triangles overlaying the modelled concentration fields.



Figure 2.9: Annual mean concentrations of  $PM_{10}$  and  $PM_{2.5}$  in 2016: calculated with the EMEP MSC-W model (colour contours) and observed at EMEP monitoring network (colour triangles). *Note: Observations include hourly, daily and weekly data.* 

The modelling results and the observations show that the annual mean levels of  $PM_{10}$  and  $PM_{2.5}$  in general decrease over the land from north to south. The concentration levels are below 2-5  $\mu$ g m<sup>-3</sup> in northern Europe, increasing to 5-15  $\mu$ g m<sup>-3</sup> in the mid-latitude and farther

south. Figure 2.9 also reveals that elevated  $PM_{10}$  and  $PM_{2.5}$  levels of 15-20  $\mu$ g m<sup>-3</sup> occurred in some areas (the Benelux countries and parts of Germany, Poland and East-European countries); and in most years a persistent hot-spot, with calculated  $PM_{2.5}$  and  $PM_{10}$  exceeding 20-30  $\mu$ g m<sup>-3</sup>, is seen in the Po Valley. In the regions east from the Caspian Sea (parts of Kazakhstan, Uzbekistan, Turkmenistan) and in southern Mediterranean the model calculates annual mean PM levels in far excess of 50  $\mu$ g m<sup>-3</sup>. These high PM concentrations are due to windblown dust from the arid soils, though the accurateness of the calculated values cannot presently be verified due to the lack of observations in these regions.

There is quite a good agreement between the modelled and observed distribution of mean  $PM_{10}$  and  $PM_{2.5}$ , with annual mean correlation coefficients of 0.78 and 0.71 respectively, as documented in Tsyro et al. (2018). Overall, the model underestimates the observed annual mean  $PM_{10}$  and  $PM_{2.5}$  by 22% and 10%, respectively. A comprehensive model evaluation is provided in Tsyro et al. 2018.



Figure 2.10: Relative anomaly of mean PM<sub>10</sub> and PM<sub>2.5</sub> in 2016 from the mean in 2000-2015.

Figure 2.10 presents the relative anomaly of  $PM_{10}$  and  $PM_{2.5}$  concentration levels in 2016 compared to the corresponding averages over the 2000-2015 period. Practically over all of the European part of the EMEP grid, the annual mean concentrations of  $PM_{10}$  and  $PM_{2.5}$  were 10-30% lower compared to the mean PM levels in the 2000s (and more than 30% lower in the south-west of France, in the Pyrenees, parts of Italy, Greece, and also Scotland and the Baltic region). On the other hand,  $PM_{10}$  and  $PM_{2.5}$  were in 2016 5-30% higher in the very eastern

and southern EMEP areas. This is consistent with the emission changes during that period, namely emission decrease in the western part, while increase in the eastern part of the EMEP domain (Chapter 3). This distribution of high/low PM anomalies loosely resembles the pattern of the reciprocal of the precipitation anomaly in 2016, shown in Section 2.1 (Figure 2.1b), suggesting that the enhanced wet removal of aerosols from the air contributed to the lower PM pollution in many parts of Europe in 2016.

#### Exceedances of EU limit values and WHO Air Quality Guidelines in 2016

This section compares the exceedances by  $PM_{10}$  and  $PM_{2.5}$  concentrations of EU critical limits and WHO recommended Air Quality Guidelines (WHO 2005) calculated with the EMEP MSC-W model and measured at EMEP sites. The EU limit values for  $PM_{10}$  (Council Directive 1999/30/EC) are 40  $\mu$ g m<sup>-3</sup> for the annual mean and 50  $\mu$ g m<sup>-3</sup> for the daily mean concentrations, with the daily limit not to be exceeded more than 35 times per calendar year (EU 2008). For  $PM_{2.5}$ , the annual mean limit value of 25  $\mu$ g m<sup>-3</sup> entered into force 01.01.2015.

The Air Quality Guidelines (AQG) recommended by WHO (WHO 2005) are:

- for PM<sub>10</sub>: 20  $\mu$ g m<sup>-3</sup> annual mean, 50  $\mu$ g m<sup>-3</sup> 24-hourly (99th perc. or 3 days per year)
- for PM<sub>2.5</sub>: 10  $\mu$ g m<sup>-3</sup> annual mean, 25  $\mu$ g m<sup>-3</sup> 24-hourly (99th perc. or 3 days per year)

The EU limit values for protection of human health from particulate matter pollution and the WHO AQG for PM should apply to concentrations for so-called zones, or agglomerations, in rural and urban areas, which are representative for exposure of the general population. Prior to this report, operational EMEP MSC-W model calculations were performed on  $50 \times 50 \text{km}^2$  grid and provided regional background PM concentrations. PM<sub>10</sub> and PM<sub>2.5</sub> concentrations calculated on  $0.1^{\circ} \times 0.1^{\circ}$  grid are expected to offer a better representation of PM levels occurring in rural and to some extend in urban areas.

Model results and EMEP observational data show that the annual mean  $PM_{10}$  concentrations were below the EU limit value of 40  $\mu$ g m<sup>-3</sup> for all of Europe in 2016 (Figure 2.9 (a)). The model calculates annual mean  $PM_{10}$  above the WHO recommended AQG of 20  $\mu$ g m<sup>-3</sup> in the Po Valley and the western parts of Turkey. The highest observed annual mean  $PM_{10}$  concentrations were seen in Greece (GR0001) with 34  $\mu$ g m<sup>-3</sup>, in Cyprus (CY0002) with 20  $\mu$ g m<sup>-3</sup>, and in the Po Valley (IT0004) with 18  $\mu$ g m<sup>-3</sup>.

Further, the observations and model calculations show that in 2016,  $PM_{2.5}$  pollution did not exceed the EU limit value of 25  $\mu$ g m<sup>-3</sup> for annual mean level (except in the Po Valley according to the model). However, there were observed cases of exceedance of the WHO AQG value of 10  $\mu$ g m<sup>-3</sup> by observed annual mean PM<sub>2.5</sub> at ten sites, with the highest values in Greece (GR0001), the Po Valley (IT0004) and Hungary (HU0002) with concentrations above 14  $\mu$ g m<sup>-3</sup>, while some French, German, Austrian, Polish and Czech sites observed annual mean concentrations above 10  $\mu$ g m<sup>-3</sup>. This pattern is quite well reproduced by the model.

The maps in Figure 2.11 show the number of days with exceedances of 50  $\mu$ g m<sup>-3</sup> for PM<sub>10</sub> and 25  $\mu$ g m<sup>-3</sup> for PM<sub>2.5</sub> in 2016: model calculated as colour contours and observed as triangles.

Compared to the previous year of 2015, PM limit value exceedances were registered at fewer sites and the number of exceedance days were in general lower in 2016. Out of 63 sites with  $PM_{10}$  measurements, exceedance days were observed at 34. No violations of the  $PM_{10}$ 



Figure 2.11: Calculated (with 0.1 °resolution) and observed (triangles) number of days with exceedances in 2016:  $PM_{10}$  exceeding 50 µg m<sup>-3</sup> (upper) and  $PM_{2.5}$  exceeding 25 µg m<sup>-3</sup> (lower). Note: EU Directive requires no more than 35 days with exceedances for  $PM_{10}$ , whereas WHO recommends no more than 3 days with exceedances for  $PM_{10}$  and  $PM_{2.5}$  per a calendar year.

EU limit value (more than 35 exceedance days) were observed, still 15 sites had more than 3 exceedance days (according to WHO AQG recommendations). The highest numbers of days with observed exceedances of  $PM_{10}$  were 32 at GR0001 and 11 at ES0007.

 $PM_{2.5}$  concentrations exceeded the WHO AQG value at 33 out of 46 stations in 2016. Among those, at 27 sites the number of exceedance days were more than 3 (the recommended limit according to WHO AQG). The highest number of exceedance days are observed at IT0004 (55), GR0001 (44), HU0002 (41), AT0002 (38) and PL0009 (34).

The model calculated exceedance days in 2016 are in generally good agreement with the observations (especially for  $PM_{10}$ ), though it shows a tendency towards overestimation of the frequency of exceedances in the Mediterranean region, i.e. at the sites severely affected by Saharan dust (CY0002 and GR0001). At those sites, and to a less degree at some Spanish and Dutch sites, the model overestimates the number of exceedance days, more pronounced for  $PM_{2.5}$ .

#### PM pollution episodes in 2016

Several PM pollution episodes were recorded in different parts of Europe in 2016. Among the major PM episodes identified in the CAMS Interim Annual Assessment Report on European air quality in for 2016 (Tarrason et al. 2017), is a  $PM_{10}$  episode 1-9 January (affected mainly Central Europe, with minor impacts on Western and Northern Europe) and two  $PM_{2.5}$  episodes: 9-20 March and 4-9 December (covering Central, Western and Northern Europe).



Figure 2.12: Modelled and observed timeseries of PM<sub>2.5</sub>.

Winter episodes of particulate pollution in Central Europe were already discussed in a number of earlier EMEP Status Reports (e.g. 4/2013, 1/2014, 1/2016 and 1/2017). The meteorological situations favouring them are typically characterised by low temperatures and stagnant air conditions, and in addition enhanced use of wood burning for residential heating in cold weather leading to considerable increase of local PM emissions.

The PM episodes in 2016 described in Tarrason et al. (2017) are confirmed both by the EMEP MSC-W model and by observations (some examples are given in Figures 2.12 and 2.13). In addition to the 1-9 January episode, mainly seen in Central Europe (e.g. at AT0002 and DE0002 in Figure 2.12), our results also reveal an occurrence of elevated PM levels in the second part of January at a number of sites in a large part of Europe (AT0002 in Figure 2.12; PL0005, SI0008 and IT0004 in Figure 2.13). We find that the March episode is mostly prominent at French stations (examples for FR0018 and FR0024 are shown in Figure 2.12), but not so pronounced elsewhere. The reported 4-9 December episode in Tarrason et al. (2017) is embedded in a longer period with elevated  $PM_{10}$  and  $PM_{2.5}$  concentrations, lasting from the end of November through almost end-December, as seen in Figures 2.12 and 2.13.

To facilitate a better understanding of the origin of the PM pollution, details on PM chemistry are also included in Figure 2.13 for three sites with available data (IT0004, SI0008 and



— PM<sub>2.5</sub> mass (obs.) ■ SO<sub>4</sub><sup>2</sup> ■ NO<sub>3</sub><sup>\*</sup> ■ NH<sub>4</sub><sup>\*</sup> ■ Organic mass ■ EC ■ Undetermined

Figure 2.13: Chemical composition of  $PM_{2.5}$  in 2016 observed and modelled at IT0004, SI0008 and PL0005 in 2016. Organic mass in the observations is calculated multiplying the observed OC with 1.5.

PL0005). Due to the limited observational data available we look at  $PM_{2.5}$  only, since few sites have measurements of chemical composition in the coarse fraction. Further, several sites with chemical composition measurements in  $PM_{2.5}$  have reduced sampling frequency, i.e. with one 24 hour sample per week, making it difficult to interpret.

The three sites, which all have highest concentrations both in model and observations during the winter months, show different chemical composition of the  $PM_{2.5}$  mass. I.e at IT0004,

the highest contribution is organic mass, while in Diabla Gora (PL0005) secondary inorganic aerosols (SIA) are most important. Iskrba (SI0008) is somewhat in-between. But also at the Slovenian site, organic mass is the most important contribution, though more important in observations than in the model. At Ispra the sulphate concentrations are relatively low compared to the other compounds and sites. These differences in chemical composition reflect the differences in PM sources. When comparing the winter season with summer, the EC and nitrate contributions are generally higher for all sites in winter, both for model and observations. For organic mass and sulphate, there are not that clear variations. However, even if organic mass can be equally high in summer as in winter, the source origins are quite different. In winter, contributions from residential heating is important, while in summer natural biological primary and secondary sources are more relevant (Bergström et al. 2012).

#### 2.4.3 Deposition of sulphur and nitrogen

Modelled total depositions of sulphur and oxidised and reduced nitrogen are presented in Figure 2.14. For sulphur, many hot spot areas are found in the south-eastern part of the domain. In addition, volcanic emissions of  $SO_2$  leads to high depositions in and around Sicily. Oxidised nitrogen depositions are highest in northern Germany, the Netherlands, Belgium and northern Italy. These countries also have high depositions of reduced nitrogen, as do parts of the United Kingdom, France, Belgium in western Europe, and Turkey, Georgia, Armenia, Azerbaijan, Kyrgyzstan, Uzbekistan and Tajikistan in the east.

In Figure 2.15 wet depositions of nitrogen and sulphur compounds are compared to measurements at EMEP sites for 2016. Overall, the bias between model and measurements are around -2 to -10%, but higher for individual sites. A more detailed comparison between model and measurements for the year 2016 can be found in Gauss et al. (2018b).

#### Exceedances of critical loads of acidification and eutrophication

The exceedances of European critical loads (CLs) are computed for the total nitrogen (N) and sulphur (S) depositions modelled on the  $0.1^{\circ} \times 0.1^{\circ}$  longitude-latitude grid (approx.  $11 \times 5.5$  km<sup>2</sup> at 60°N).

Exceedances are calculated for the European critical loads data documented in Hettelingh et al. (2017), whereas a description of the methodologies can be found in De Vries et al. (2015). The critical loads data for eutrophication by N (CLeutN) and for acidification by N and S are also used by the CIAM (located at IIASA) in integrated assessment modelling. The exceedance in a grid cell is the so-called 'average accumulated exceedance' (AAE), computed as the area-weighted mean of the exceedances of the critical loads of all ecosystems in that grid cell. The units for critical loads and their exceedances are equivalents (eq; same as moles of charge,  $mol_c$ ) per area and time, making S and N depositions comparable on their impacts (important for acidity CLs).

Critical loads are available for about 4 million ecosystems in Europe covering an area of about 3 million km<sup>2</sup> (west of 42°E). The exceedances (AAE) of those critical loads are computed on a  $0.5^{\circ} \times 0.25^{\circ}$  longitude-latitude grid, and maps thereof are shown in Figure 2.16 and 2.17.

As it can be seen from the maps, critical loads for eutrophication are exceeded in virtually all countries in 2016, in about 61.7% of the ecosystem area (73% in the EU28) and the European average exceedance is about 217 eq ha<sup>-1</sup>yr<sup>-1</sup> (289 eq ha<sup>-1</sup>yr<sup>-1</sup> in the EU28). The



Figure 2.14: Deposition of sulphur and nitrogen  $[mgS(N)m^{-2}]$  in 2016.

highest exceedances are found in the Po Valley in Italy, the Dutch-German-Danish border areas and in north-eastern Spain.

In contrast, critical loads of acidity are exceeded in a much smaller area. Hot spots of exceedances can be found in the Netherlands and its border areas to Germany and Belgium, and some smaller maxima in southern Germany and the Czech Republic, whereas most of Europe is not exceeded (grey areas). In Europe as a whole, acidity exceedances in 2016 occur



(c) Reduced N



in about 5.3% of the ecosystem area (6.6% in the EU28), and the European average AAE is about 20 eq  $ha^{-1}yr^{-1}$  (28 eq  $ha^{-1}yr^{-1}$  in the EU28).

The depositions of total N and S on the  $0.1^{\circ} \times 0.1^{\circ}$  grid have not only been modelled for the year 2016, but also for the years 2000-2015. This enables us to compute consistent time series of exceedances for the period 2000-2016, and in Figure 2.18 such times series are shown for



Figure 2.16: Exceedances of critical loads for eutrophication computed with the 2000, 2005, 2010 and 2016 N and S depositions simulated with the EMEP MSC-W model on a  $0.1 \times 0.1^{\circ}$  longitude-latitude grid and mapped on a  $0.5^{\circ} \times 0.25^{\circ}$  grid.

(d) Eutrophication, 2016

the whole of Europe.

(c) Eutrophication, 2010

Figure 2.18 shows that the general trend in Europe from the year 2000 onward is a decrease in average exceedances and in exceeded ecosystem area, both for eutrophication and acidification. While the decreases themselves are roughly comparable for both effects, acid-ification is a much smaller concern than eutrophication, as is also evident from the maps in Figure 2.16 and 2.17.

The decreases in exceedances (areas and amounts) are not always monotone, with some years showing an increase compared to the previous one, reflecting spatial and temporal meteorological fluctuations (as critical loads are identical for all years). There is a rather strong correlation between exceedances and exceeded area, which is not surprising for larger areas.



(c) Acidification, 2010

(d) Acidification, 2016

Figure 2.17: Exceedances of critical loads for acidification computed with the 2000, 2005, 2010 and 2016 N and S depositions simulated with the EMEP MSC-W model on a  $0.1 \times 0.1^{\circ}$  longitude-latitude grid and mapped on a  $0.5^{\circ} \times 0.25^{\circ}$  grid.

Nevertheless, this is not always the case: during the first 7-8 years the exceedances of eutrophication CLs decreased, whereas the exceeded area stayed almost the same, i.e. the N depositions decreased, but did not go below CLs in most of the exceeded areas.

Overall, the trends illustrated in Figures 2.17, 2.16 and 2.18 point in the 'right' direction, but a lot remains to be done in terms of emission reductions to achieve non-exceedance of critical loads everywhere.



Figure 2.18: Temporal trends of the average European CL exceedance (in eq  $ha^{-1}yr^{-1}$ , top) and the ecosystem area exceeded (in percent of total, bottom), both for eutrophication (left) and acidification (right) for the years 2000 through 2016. Note that the ranges on the vertical axes for eutrophication and acidification are the same but differ in their absolute values.

#### 2.4.4 Model calculations for 2017

Preliminary model calculations for 2017 has been performed. The meteorology for 2017 has been prepared the same way as for 2016, described in Chapter 2.3. The data for 2016 (same as in the status run) are used for emissions from anthropogenic sources and forest fires (FINN). Climatological means are used for boundary conditions. The EMEP MSC-W model version is the same as used for 2016 runs (rv4.17a).

As an example, 2017 results for nitrogen dioxide is shown in Figure 2.19. The data can also be download from the EMEP webpage (http://www.emep.int).

No analysis of the 2017 results has been attempted here, as the EMEP measurement data are not available until spring 2019.



Figure 2.19: Example of 2017 results for NO\_2 [ $\mu$ g m<sup>-3</sup>]

# References

- Bergström, R., Denier van der Gon, H., Prevot, A., Yttri, K., and Simpson, D.: Modelling of organic aerosols over Europe (2002-2007) using a volatility basis set (VBS) framework with application of different assumptions regarding the formation of secondary organic aerosol, Atmos. Chem. Physics, 12, 5425–5485, 2012.
- Blunden, J. and Arndt, D. S. E.: 2017: State of the Climate in 2016, bull. Amer. Meteor. Soc., 98 (8), Si-S277, doi:10.1175/2017BAMSStateoftheClimate.1, 2017.
- De Vries, W., Hettelingh, J.-P., and Posch, M.: Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems, doi:10.1007/978-94-017-9508-1, Environmental Pollution Series Vol. 25, Springer, Dordrecht, xxviii+662 pp.; ISBN 978-94-017-9507-4, 2015.
- EU: Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe., Official Journal of the European Union L 152, 11 June 2008, pp. 1-44., L 152, 1–44, URL http://faolex.fao.org/docs/pdf/eur80016. pdf, 2008.
- Gauss, M., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: Ozone, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018a.
- Gauss, M., Tsyro, S., Fagerli, H., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: EMEP MSC-W model performance for acidifying and eutrophying components, photo-oxidants and particulate matter in 2016., Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018b.
- Hettelingh, J.-P., Posch, M., and Slootweg, J.: European critical loads: database, biodiversity and ecosystems at risk., doi:10.21945/RIVM-2017-0155, CCE Final Report 2017. RIVM Report 2017-0155, 2017.
- Hjellbrekke, A.-G.: Data Report 2016 Particulate matter, carbonaceous and inorganic compounds, Tech. Rep. EMEP/CCC Report 1/2018, Norwegian Institute for Air Research, Kjeller, Norway, 2018.
- Hjellbrekke, A.-G. and Solberg, S.: Ozone measurements 2016, Tech. Rep. EMEP/CCC Report 2/2018, Norwegian Institute for Air Research, Kjeller, Norway, 2018.
- Overland, J., Hanna, E., Hanssen-Bauer, I., Kim, S.-J., Walsh, J., Walsh, J. E., Wang, M., Bhatt, U. S., and Thoman, R. L.: Surface Air Temperature, in Arctic Report Card 2016, NOAA, http://www.arctic.noaa.gov/Report-Card/Report-Card-Archive, 2016.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Physics, 12, 7825–7865, doi:10.5194/acp-12-7825-2012, 2012.

- Tarrason, L., Hamer, P., Guerreiro, C., Meleux, F., and Rouil, L.: Interim Annual Assessment Report for 2015. European air quality in 2015, Tech. Rep. CAMS71\_2016SC1\_D71.1.1.2\_201609, URL http://policy.atmosphere. copernicus.eu/reports/CAMS71\_2016SC1\_D71.1.1.2\_201609\_final. pdf/, 2016.
- Tarrason, L., Hamer, P., Guerreiro, C., Meleux, F., and Rouil, L.: Interim Annual Assessment Report. European air quality in 2016, Tech. Rep. CAMS71\_2016SC2\_D71.1.1.6\_IAAR2016\_v4, URL http://policy. atmosphere.copernicus.eu/reports/CAMS-71\_2016SC2\_D71.1.1. 6\_201707\_2016IAR\_V4.pdf, 2017.
- Tsyro, S., Gauss, M., Hjellbrekke, A.-G., and Aas, W.: PM10, PM2.5 and individual aerosol components, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018.
- Tuovinen, J.-P., Simpson, D., Ashmore, M., Emberson, L., and Gerosa, G.: Robustness of modelled ozone exposures and doses, Environ. Poll., 146, 578–586, 2007.
- UNECE: Progress in activities in 2009 and future work. Measurements and modelling (acidification, eutrophication, photooxidants, heavy metals, particulate matter and persistent organic pollutants). Draft revised monitoring strategy., Tech. Rep. ECE/EB.AIR/GE.1/2009/15, UNECE, URL http://www.unece.org/env/ documents/2009/EB/ge1/ece.eb.air.ge.1.2009.15.e.pdf, 2009.
- WHO: Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide, URL http://www.who.int/phe/health\_topics/ outdoorair/outdoorair\_aqg/en/, World Health Organisation, European Centre for Environment and Health Bonn Office, ISBN 92 890 2192, 2005.
- WMO: WMO Statement on the State of the Global Climate in 2016, WMO-No. 1189, https://public.wmo.int/en/resources/library, ISBN 978-92-63-11189-0, 2017.

# CHAPTER 3

# Emissions for 2016

#### Melanie Tista, Robert Wankmüller, Bradley Matthews, Katarina Mareckova, Hilde Fagerli and Ágnes Nyíri

In addition to meteorological variability, changes in the emissions affect the inter-annual variability and trends of air pollution, deposition and transboundary transport. The main changes in emissions in 2016 with respect to previous years are documented in the following sections.

# **3.1** Emissions for 2016

The EMEP Reporting guidelines (UNECE 2014) requests all Parties to the LRTAP Convention to report annually emissions and activity data of air pollutants ( $SO_x^{-1}$ ,  $NO_2^{-2}$ , NMVOCs <sup>3</sup>, NH<sub>3</sub>, CO, HMs, POPs, PM <sup>4</sup> and voluntary BC). Further, every four years, projection data, gridded data and information on large point sources (LPS) have to be reported to the EMEP Centre on Emission Inventories and Projections (CEIP).

<sup>&</sup>lt;sup>1</sup>"Sulphur oxides (SO<sub>x</sub>)" means all sulphur compounds, expressed as sulphur dioxide (SO<sub>2</sub>), including sulphur trioxide (SO<sub>3</sub>), sulphuric acid (H<sub>2</sub>SO<sub>4</sub>), and reduced sulphur compounds, such as hydrogen sulphide (H<sub>2</sub>S), mercaptans and dimethyl sulphides, etc.

<sup>&</sup>lt;sup>2</sup>"Nitrogen oxides  $(NO_x)$ " means nitric oxide and nitrogen dioxide, expressed as nitrogen dioxide  $(NO_2)$ .

<sup>&</sup>lt;sup>3</sup>"Non-methane volatile organic compounds" (NMVOCs) means all organic compounds of an anthropogenic nature, other than methane, that are capable of producing photochemical oxidants by reaction with nitrogen oxides in the presence of sunlight.

<sup>&</sup>lt;sup>4</sup>"Particulate matter" (PM) is an air pollutant consisting of a mixture of particles suspended in the air. These particles differ in their physical properties (such as size and shape) and chemical composition. Particulate matter refers to:

<sup>(</sup>i) "PM<sub>2.5</sub>", or particles with an aerodynamic diameter equal to or less than 2.5 micrometers ( $\mu$ m);

<sup>(</sup>ii) "PM<sub>10</sub>", or particles with an aerodynamic diameter equal to or less than 10 ( $\mu$ m).

#### **3.1.1** Reporting of emission inventories in 2018

Completeness and consistency of submitted data have improved significantly since EMEP started collecting information on emissions. Data from at least 45 Parties each year were submitted to CEIP for the last seven years (compare Figure 3.1). 45 Parties (88 %) submitted inventories<sup>5</sup> in 2018; six Parties<sup>6</sup> did not submit any data and 37 countries reported black carbon (BC) emissions (see section 3.1.2). Although 2018 was no reporting year for large point sources (LPS), gridded emissions and projections, four countries reported voluntary information on LPS, seven countries reported gridded data in the new resolution, and four countries reported projection data (Burgstaller et al. 2018).



Figure 3.1: Parties reporting emission data to EMEP since 2002, as of 6 June 2018.

The quality of the submitted data across countries differs quite significantly. By compiling the inventories, countries have to use the newest available version of the EMEP/EEA air pollutant emission inventory guidebook, which is the version of 2016 (EMEP/EEA 2016). However, many countries still use the 2013 Guidebook (EMEP/EEA 2013) or even older versions. Uncertainty of the reported data (national totals, sectoral data) is considered relatively high, the completeness of reported data has not turned out satisfactory for all pollutants and sectors either.

Detailed information on recalculations, completeness and key categories, plus additional review findings, can be found in the annual EEA & CEIP technical inventory review reports (Burgstaller et al. 2018) and its Annexes<sup>7</sup>.

#### **3.1.2** Black Carbon (BC) emissions

Over the last decade, black carbon (BC) has emerged as one of the most important anthropogenic air pollutants. According to the latest independent inventory estimates with the GAINs model, global total anthropogenic emissions of BC were 7.2 Tg BC in 2010, with 4.16 Tg BC and 1.35 Tg BC originating from residential combustion and road transport sectors, respectively (Klimont et al. (2017)). In their seminal review Bond et al. (2013) describe BC as "a distinct type of carbonaceous material, formed only in flames during combustion of

<sup>&</sup>lt;sup>5</sup>The original submissions from the Parties can be accessed via the CEIP homepage on http://www.ceip.at/status\_reporting/2018\_submissions.

<sup>&</sup>lt;sup>6</sup>Bosnia and Herzegovina, Kyrgyzstan, Liechtenstein, the Republic of Moldova, Monaco and Montenegro <sup>7</sup>http://www.ceip.at/review\_proces\_intro/review\_reports

carbon-based fuels". Black carbon is distinguished from other forms of carbon in atmospheric particulate matter (PM) e.g. organic carbon (OC) by its strong absorption of visible light, aggregate morphology, insolubility in water/common organic solvents, and that it is refractory (vaporization temperature ca. 4000K (Bond et al. (2013)). Due to these distinct physical properties and its potential toxicity (Janssen et al. (2012)) BC is a significant air pollutant in terms of both climate change and air quality. Given its absorption spectrum in the visible range, BC warms the atmosphere directly by absorbing solar radiation and, indirectly, by accelerating snow-/ice melt when deposited (Bond et al. (2013)). According to recent estimates, the direct radiative forcing effect of black carbon emissions during the first part of the industrial era may have been of the same magnitude as methane ( $CH_4$ ) emissions (Bond et al. (2013), Wang et al. (2016)). Meanwhile, in terms of human health, epidemiological studies suggest that certain pulmonary and cardiovascular conditions are more strongly associated with exposure to BC rather than aggregate PM (e.g. Baumgartner et al. (2014)).

The emerging significance of BC is mirrored in developments in the international policy arena. Since the new National Emissions Ceilings (NEC) Directive (2016/2284/EU) was adopted in 2016, EU member states have been encouraged to submit BC emissions estimates as part of their mandatory NEC reporting obligations. Furthermore, in the context of the particularly acute impacts of BC in accelerating climate change in the Arctic (Sand et al. (2016)), ministers of the Arctic Council adopted the Enhanced Black Carbon and Methane Emissions Reductions: An Arctic Council Framework Action which committed the Arctic States (Canada, Denmark, Finland, Iceland, Norway, Russia, Sweden and United States of America) to develop and submit emissions inventories for BC and CH<sub>4</sub> to the Council. The EU is particularly keen to support further international policy development concerning BC and climate change in the Arctic (Romppanen (2018)), as demonstrated by the recent EU initiative EU Action on Black Carbon in the Arctic (EUA-BCA)<sup>8</sup>. The overall goal of the Action (2018–2020) is to contribute to the development of collective responses to reduce black carbon emissions in the Arctic and the action will examine *inter alia* current BC emissions reporting by the Parties to the LRTAP Convention. Since the Executive Body Decision 2013/04 parties to the LRTAP Convention have been formally encouraged to submit inventory estimates of their national BC emissions, and since 2015 the reporting templates have been updated to include BC data. As per the reporting guidelines (ECE/EB.AIR/128), parties are encouraged to follow the methods described in the latest EMEP/EEA air pollutant emission inventory guidebook (EMEP/EEA 2016), where source level emissions are calculated as source-specific percentages of the respective PM<sub>2.5</sub> emissions. Below a brief overview of BC emissions estimates submitted by EMEP countries is given.

Twenty countries (out of 37) submitted a complete time series (1990-2016), 31 submitted a complete time series from 2000 onwards. Figure 3.2 shows the emission trends of 11 countries that submitted full time series and showed the highest absolute BC emissions in 2016. Although gridded BC data is requested by the modelers, the quality of the reported data is still not sufficient across most of the countries, therefore CEIP cannot provide these data. Figure 3.3 lists the national total BC emissions in 2016, and the percentage contribution of BC to total  $PM_{2.5}$  for each country, which is 16% in mean (median). Compared to 2000, 23 countries reported a decrease of emissions and seven reported an increase.

For more detailed information on BC consult the annual EEA & CEIP technical inventory review report (Burgstaller et al. 2018).

<sup>&</sup>lt;sup>8</sup>https://www.amap.no/eu-black-carbon-action



Figure 3.2: Black Carbon emissions trends of selected countries, 1990-2016 (based on reported data).



Figure 3.3: Black Carbon emissions for the year 2016 (based on reported data). 35 out of 37 reporting parties are included in this graph; not included: MK (incomplete reporting) and EU (sum of shown EU Member States). Percentage values indicate the amount of BC on  $PM_{2.5}$ .

#### 3.1.3 EECCA countries – Status of reporting

The reporting of CLRTAP inventories by EECCA countries to the Convention is rather limited. In the last five years only Georgia, the Russian Federation and the Ukraine provided annual submissions. Submissions were often reported (long) after the deadline and/or lacking in completeness (see Table 3.1). There is not much improvement in the reporting, except that the number of submissions reported in time and/or up to the resubmission deadline is higher in the last three years than in the years before. Detailed information on the reporting of main pollutants and particulate matter in the EECCA countries is provided in Table 3.2 and 3.3.

CEIP conducts in-depth reviews of inventories, which supports Parties in compiling and submitting high quality inventories and aims to increase confidence in the data used for air pollution modelling. The aim is to conduct such a stage 3 (S3) review for every Party at least once in a five-year period. The plan for in-depth reviews for the period 2018-2020 is focusing on non-EU member states to minimise duplication of work and support EECCA countries. The plan will be modified if any listed Party does not submit the requested information within deadline. In 2018, an in-depth review of the inventories of the Republic of Moldova, Armenia,

Table 3.1: Overview of inventories submitted to CEIP by EECCA countries within the last five years. *Orange: reporting of some years or pollutants, reporting not complete (no complete time series). Light green: partly complete reporting (e.g. complete reporting for some pollutants). Green: reporting of complete time series.* 

| Reporting of the EECCA countries |                 |              |     |      |                 |              |     |      |                 |              |      |      |                 |              |     |      |                 |              |     |      |
|----------------------------------|-----------------|--------------|-----|------|-----------------|--------------|-----|------|-----------------|--------------|------|------|-----------------|--------------|-----|------|-----------------|--------------|-----|------|
|                                  | 2014 2015       |              |     |      | 2016            |              |     | 2017 |                 |              | 2018 |      |                 |              |     |      |                 |              |     |      |
|                                  | Main pollutants | PMs, TSP, BC | HMs | POPs | Main pollutants | PMs, TSP, BC | HMs | POPs | Main pollutants | PMs, TSP, BC | HMs  | POPs | Main pollutants | PMs, TSP, BC | HMs | POPs | Main pollutants | PMs, TSP, BC | HMs | POPs |
| Armenia                          | х               | х            | х   | Т    | х               | х            | x   | I    | х               | х            | x    | x    | I.              |              |     | I    | х               | х            | х   | х    |
| Azerbaijan                       | I               | I            | I   |      | х               | x            | x   | х    | x               | х            | х    | ×    | х               | x            | x   | x    | х               | х            | х   | х    |
| Belarus                          | x               | x            | x   | x    | х               | х            | х   | х    | Ι               | I            | I    | I    | Ι               |              | I   | I    | х               | х            | х   | x    |
| Georgia                          | х               | x            | Ι   | x    | х               | х            | х   | х    | х               | х            | х    | x    | х               | x            | x   | x    | х               | х            | х   | x    |
| Kazakhstan                       | Ι               | I            | I   | I    | I               | I            | I   | I    | х               | x            | х    | x    | х               | x            | x   | x    | х               | х            | х   | х    |
| Kyrgyzstan                       | x               | x            | x   | x    | I               |              |     |      | х               | х            | х    | I    | х               | x            | x   | I    | I               |              |     |      |
| Republic of<br>Moldova           | х               | х            | х   | x    | х               | х            | х   | х    | х               | х            | х    | x    | х               | х            | х   | х    | I               | I            | I   | I    |
| Russian<br>Federation            | х               | x            | I   | I    | х               | x            | Ι   | I    | х               | x            | I    | I    | х               | x            | I   | I    | х               | х            | I   | I    |
| Ukraine                          | х               | x            | x   | x    | х               | х            | x   | х    | х               | x            | x    | I    | х               | x            | x   | I    | х               | х            | х   |      |

Table 3.2: Reporting of main pollutants (NO<sub>x</sub>, NMVOCs, SO<sub>x</sub> and NH<sub>3</sub>) and CO of the EECCA countries within the last five years.

| Reporting of NO <sub>x</sub> , NMVOCs, SO <sub>x</sub> , NH <sub>3</sub> and CO |                      |                                           |                                                                   |                                                     |                                                        |  |  |  |  |
|---------------------------------------------------------------------------------|----------------------|-------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| EECCA countries                                                                 | 2014                 | 2015                                      | 2016                                                              | 2017                                                | 2018                                                   |  |  |  |  |
| Armenia                                                                         | 2006, 2008 -<br>2012 | 2008 - 2013                               | 2014                                                              |                                                     | 2016                                                   |  |  |  |  |
| Azerbaijan                                                                      |                      | 1990 - 2013<br>(not SO <sub>x</sub> , CO) | 1990-2014<br>(SO <sub>x</sub> , CO:<br>1995-2014)                 | 1990 - 2015<br>(SO <sub>x</sub> , CO:<br>1995-2015) | 1990 - 2016<br>(SO <sub>x</sub> , CO: 1995 to<br>2016) |  |  |  |  |
| Belarus                                                                         | 2012                 | 2013                                      |                                                                   |                                                     | 2014-2016                                              |  |  |  |  |
| Georgia                                                                         | 2012                 | 2007 - 2013                               | 2007-2014                                                         | 2007 - 2015                                         | 2007-2016                                              |  |  |  |  |
| Kazakhstan                                                                      |                      |                                           | 2013-2014                                                         | 1990, 2000,<br>2005, 2010 -<br>2015                 | 1990 - 2016                                            |  |  |  |  |
| Kyrgyzstan                                                                      | 2012                 |                                           | 2014                                                              | 2015                                                |                                                        |  |  |  |  |
| Republic of Moldova                                                             | 1990 - 2012          | 2013                                      | 1990-2014 (no<br>emissions<br>calculated for the<br>waste sector) | 1990 - 2015                                         |                                                        |  |  |  |  |
| Russian Federation                                                              | 2011, 2012           | 2013                                      | 2014                                                              | 2010-2015                                           | 2010-2016                                              |  |  |  |  |
| Ukraine                                                                         | 2012                 | 2013                                      | 2014                                                              | 2015                                                | 2016                                                   |  |  |  |  |

| Reporting of BC, PM <sub>2.5</sub> , PM <sub>10</sub> and TSP |                                 |                                |                                                                   |                                     |                                |  |  |  |  |  |
|---------------------------------------------------------------|---------------------------------|--------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------|--|--|--|--|--|
| EECCA countries                                               | 2014*                           | 2015                           | 2016                                                              | 2017                                | 2018                           |  |  |  |  |  |
| Armenia                                                       | 2006, 2008 -<br>2012 (only TSP) | 2008 - 2013<br>(only TSP)      | 2014                                                              |                                     | 2016                           |  |  |  |  |  |
| Azerbaijan                                                    |                                 | 1990 - 2013<br>(BC: 1995-2013) | 1990-2014<br>(BC: 1995-2014)                                      | 1990 - 2015<br>(BC: 2014, 2015)     | 1990 - 2016<br>(BC: 2014-2016) |  |  |  |  |  |
| Belarus                                                       | 2012                            | 2013 (no BC)                   |                                                                   |                                     | 2014-2016<br>(BC: 2016)        |  |  |  |  |  |
| Georgia                                                       | 2012                            | 2007 - 2013<br>(no BC)         | 2007-2014                                                         | 2007 - 2015                         | 2007-2016                      |  |  |  |  |  |
| Kazakhstan                                                    |                                 |                                | 2013-2014                                                         | 1990, 2000,<br>2005, 2010 -<br>2015 | 1990 - 2016                    |  |  |  |  |  |
| Kyrgyzstan                                                    | 2012 (only<br>PM10)             |                                | 2014 (no TSP,<br>no BC)                                           | 2015 (no BC)                        |                                |  |  |  |  |  |
| Republic of Moldova                                           | 1990 - 2012                     | 2013                           | 1990-2014 (no<br>emissions<br>calculated for the<br>waste sector) | 1990 - 2015                         |                                |  |  |  |  |  |
| Russian Federation                                            | 2011, 2012                      | 2013 (no BC)                   | 2014 (no BC)                                                      | 2010-2015 (no<br>BC)                | 2010-2016 (no<br>BC)           |  |  |  |  |  |
| Ukraine                                                       | 2012                            | 2013 (no BC)                   | 2014 (no BC)                                                      | 2015 (no BC)                        | 2016 (no BC)                   |  |  |  |  |  |

Table 3.3: Reporting of main pollutants BC,  $PM_{2.5}$ ,  $PM_{10}$  and TSP of the EECCA countries within the last five years.

Belarus, Ukraine and Azerbaijan will be made. In 2019, the Russian Federation and Georgia, and in 2020, Kyrgyzstan and Kazakhstan will be reviewed.

#### 3.1.4 Emission trends in the EMEP area

To provide a picture as complete as possible of the emission trends in the EMEP area<sup>9</sup>, data as used for EMEP models (i.e. gap-filled data) were used for the calculations (see Section 3.3). The trend indicates that in the EMEP area total emissions of half of the reported pollutants have decreased overall since 2000 (Figure 3.4). The presented emission trends are based on gap-filled data as used in the EMEP models, therefore there is a certain uncertainty in the magnitude of this development. The decrease is significant for SO<sub>x</sub>, CO, NO<sub>x</sub> and NMVOCs. PM and NH<sub>3</sub> emissions increase, whereas NH<sub>3</sub> increased most (+22%) since the year 2000.

A more detailed assessment shows that emission developments in the eastern and western part of the EMEP area seem to follow strongly different patterns (see Figure 3.5)<sup>10</sup>.

While emissions of all pollutants in the western part of the EMEP domain are slowly decreasing, emissions of all pollutants in the eastern part of the EMEP domain have increased since the year 2000. The emissions in the western parts of the EMEP area are mostly based

<sup>&</sup>lt;sup>9</sup>The EMEP area is the new EMEP domain, which covers the geographic area between  $30^{\circ}$  N- $82^{\circ}$  N latitude and  $30^{\circ}$  W- $90^{\circ}$  E longitude.

<sup>&</sup>lt;sup>10</sup>The split between the EMEP West region and the EMEP East region according to http://www.ceip. at/emep\_countries. 'North Africa' and sea areas are not included and 'Asian Areas' are included in the EMEP East region.



Figure 3.4: Emission trends 2000–2016 in the EMEP area (based on gap–filled data as used in EMEP models)

on reported data; the emissions in eastern parts are often expert estimates so the uncertainty is rather high. The significant increase in emissions (of all pollutants) in the 'EMEP east' area is mainly influenced by emission estimates made for the remaining Asian Areas in the EMEP domain. The new expert estimates for this area are based on grid emissions from EDGAR (JRC/PBL 2016) for 2000, 2005 and 2010, extrapolated with the GDP trend for China.



Figure 3.5: Emission trends 2000-2016 in the EMEP area (based on gap-filled data as used in EMEP models) divided in 2 areas 'EMEP West' (left), 'EMEP East' (right).

#### **Trend analysis**

Emission levels in the EMEP domain for 2016 of individual countries and areas are compared to 2000 emission levels for  $NO_x$ , NMVOCs,  $SO_x$ ,  $NH_3$ , CO and PMs (see Tables 3.4-3.5). For this comparison, gap-filled data as used in the EMEP models were used (see Section 3.3). Overview tables with reported emission trends for individual countries have been published on the CEIP website at http://www.ceip.at/status\_reporting/ 2018\_submissions. Detailed information on the sectoral level can also be accessed in

#### WebDab<sup>11</sup>.

The assessment of emission levels in individual countries and areas show an increase of emissions compared to 2000 emission levels in several countries or areas. In the case of  $PM_{coarse}$  as many as 29 countries/areas have emissions in 2016 higher than the year 2000 level, for  $PM_{10}$  and  $PM_{2.5}$  23 and 24 countries/areas showed increases, respectively. In the case of NO<sub>x</sub> there are 17 countries/areas, NMVOCs 15, SO<sub>x</sub> 16, NH<sub>3</sub> 20 and CO 13 countries/areas with higher emissions in 2016 than in year 2000. Detailed explanatory information on emission trends should be provided in the informative inventory reports (IIRs).

#### NO<sub>x</sub> emissions

Emissions decreased in 44 countries or areas and increased in 16 countries or areas (see Table 3.4) between 2000 and 2016. For the whole EMEP domain, emissions decreased by 6%. The strongest increase is shown for Georgia (+240%), followed by Kyrgyzstan (+191%).

#### **NMVOC** emissions

Emissions in the EMEP domain have decreased by 3% compared with 2000 levels. Compared with 2000, NMVOC emissions have decreased in 46 countries or areas and increased in 14 (see Table 3.4). The strongest NMVOC increases can be observed in Kyrgyzstan (+253%).

#### SO<sub>x</sub> emissions

 $SO_x$  emissions decreased by 30% between 2000 and 2016 within the EMEP domain. Compared with 2000,  $SO_x$  emissions have decreased in 45 countries or areas and increased in 15 (see Table 3.4), among them Armenia (+361%), Montenegro (+275%) and Tajikistan (+272%).

#### NH<sub>3</sub> emissions

 $NH_3$  emissions have increased in the EMEP domain by 22% compared with 2000 levels. Emissions have decreased in 35 countries or areas and increased in 19 (see Table 3.4). The strongest increases are shown for Turkmenistan (+152%) and Tajikistan (+124%).

#### **CO** emissions

The total decrease in emissions in the EMEP domain from 2000 to 2016 amounted to 17%. Compared with 2000 CO emissions have decreased in 48 countries or areas and increased in 12 (see Table 3.4), particularly in Kyrgyzstan (+256%).

#### $\mathbf{PM}_{2.5}$ emissions

 $PM_{2.5}$  emissions in the EMEP domain have increased by 6% compared with 2000 levels. Compared with the year 2000,  $PM_{2.5}$  emissions have decreased in 38 countries or areas and increased in 22 countries or areas (see Table 3.4). The largest increase is seen in Kazakhstan (+220%), followed by Tajikistan (+204%).

<sup>&</sup>lt;sup>11</sup>http://www.ceip.at/webdab\_emepdatabase/reported\_emissiondata and/or http: //www.ceip.at/webdab\_emepdatabase/emissions\_emepmodels

Table 3.4: Differences between emissions for 2000 and 2016 (based on gap–filled data as used in EMEP models). Negative values mean that 2016 emissions were lower than 2000 emissions. Orange/red coloured data means that 2016 emissions were higher than 2000 emissions.

|                        | Emission differences 2000-2016 |       |                 |       |       |                   |                  |       |
|------------------------|--------------------------------|-------|-----------------|-------|-------|-------------------|------------------|-------|
|                        | NOx                            | NMVOC | SO <sub>x</sub> | NH₃   | со    | PM <sub>2.5</sub> | PM <sub>10</sub> |       |
| Albania                | 38 %                           | 62 %  | -55 %           | -15 % | 89 %  | 69 %              | 52 %             | 10 %  |
| Armenia                | 76 %                           | 127 % | 361 %           | 80 %  | -2 %  | 2 %               | 6 %              | 17 %  |
| Asian Areas            | 121 %                          | 73 %  | 79 %            | 69 %  | 59 %  | 82 %              | 81 %             | 79 %  |
| Atlantic Ocean         | -11 %                          | -22 % | -6 %            |       | -22 % | 0 %               | 0 %              | 0 %   |
| Austria                | -28 %                          | -22 % | -56 %           | 3 %   | -24 % | -28 %             | -21 %            | -7 %  |
| Azerbaijan             | 68 %                           | 36 %  | 6 %             | 49 %  | 55 %  | -13 %             | 46 %             | 106 % |
| Baltic Sea             | -27 %                          | -22 % | -96 %           |       | -22 % | -51 %             | -50 %            | -43 % |
| Belarus                | -32 %                          | -32 % | -59 %           | -9 %  | -39 % | -36 %             | -36 %            | -37 % |
| Belgium                | -44 %                          | -47 % | -75 %           | -26 % | -61%  | -38 %             | -37 %            | -36 % |
| Black Sea              | -10 %                          | -21 % | -3 %            |       | -21 % | 1%                | 1%               | 1%    |
| Bosnia and Herzegovina | -11 %                          | -35 % | -12 %           | 24 %  | 4 %   | -12 %             | -16 %            | -21 % |
| Bulgaria               | -15 %                          | -22 % | -88 %           | -7 %  | -29 % | 24 %              | 2 %              | -24 % |
| Caspian Sea            | 182 %                          | 182 % | 182 %           |       | 182 % | 182 %             | 182 %            | 182 % |
| Croatia                | -39 %                          | -34 % | -75 %           | -14 % | -55 % | -45 %             | -37 %            | -2 %  |
| Cyprus                 | -32 %                          | -40 % | -66 %           | -12 % | -52 % | -51 %             | -58 %            | -67 % |
| Czech Republic         | -44 %                          | -30 % | -51 %           | -16 % | -16 % | -23 %             | -26 %            | -35 % |
| Denmark                | -49 %                          | -40 % | -69 %           | -22 % | -47 % | -13 %             | -13 %            | -13 % |
| Estonia                | -30 %                          | -41 % | -69 %           | 28 %  | -30 % | -51 %             | -65 %            | -78 % |
| Finland                | -44 %                          | -50 % | -51 %           | -8 %  | -42 % | -31 %             | -25 %            | -13 % |
| France                 | -48 %                          | -62 % | -78 %           | -5 %  | -59 % | -48 %             | -42 %            | -23 % |
| Georgia                | 240 %                          | 7 %   | 5 %             | 7 %   | 28 %  | -38 %             | -29 %            | 85 %  |
| Germany                | -37 %                          | -35 % | -45 %           | 2 %   | -40 % | -38 %             | -30 %            | -18 % |
| Greece                 | -37 %                          | -37 % | -88 %           | -9 %  | -58 % | -43 %             | -37 %            | -28 % |
| Hungary                | -36 %                          | -31 % | -95 %           | -6 %  | -45 % | 10 %              | -3 %             | -26 % |
| Iceland                | -15 %                          | -17 % | 43 %            | 1%    | 148 % | -2 %              | 4 %              | 31 %  |
| Ireland                | -36 %                          | -11 % | -90 %           | 1%    | -59 % | -36 %             | -28 %            | -17 % |
| Italy                  | -49 %                          | -43 % | -85 %           | -16 % | -52 % | -17 %             | -21 %            | -36 % |
| Kazakhstan             | 107 %                          | 75 %  | 56 %            | 58 %  | 110 % | 220 %             | 256 %            | 425 % |
| Kyrgyzstan             | 191 %                          | 253 % | 113 %           | 40 %  | 256 % | 65 %              | 53 %             | 30 %  |
| Latvia                 | -15 %                          | -24 % | -80 %           | 16 %  | -59 % | -29 %             | -11 %            | 98 %  |
| Liechtenstein          | -21 %                          | -46 % | -57 %           | -3 %  | -24 % | -4 %              | -8 %             | -32 % |
| Lithuania              | 2 %                            | -25 % | -58 %           | -1 %  | -26 % | -19 %             | -5 %             | 11 %  |
| Luxembourg             | -51 %                          | -18 % | -70 %           | -9 %  | -47 % | -37 %             | -27 %            | 6 %   |
| FYR of Macedonia       | -49 %                          | -42 % | -45 %           | -22 % | -49 % | -52 %             | -51 %            | -49 % |
| Malta                  | -40 %                          | -11 % | -91 %           | -21 % | -58 % | 1%                | -1 %             | -5 %  |
| Republic of Moldova    | 116 %                          | 69 %  | 127 %           | -3 %  | 195 % | 173 %             | 90 %             | 17 %  |
| Mediterranean Sea      | -12 %                          | -23 % | -3 %            |       | -23 % | 2 %               | 2 %              | 0 %   |
| Monaco                 | -35 %                          | -28 % | -86 %           | -4 %  | -62 % | -25 %             | -25 %            | -25 % |
| Montenegro             | 59 %                           | -14 % | 275 %           | -65 % | -25 % | 11 %              | 53 %             | 97 %  |
| Netherlands            | -45 %                          | -44 % | -64 %           | -27 % | -25 % | -57 %             | -40 %            | -6 %  |
| North Africa           | 73 %                           | 17 %  | 63 %            | 56 %  | -5 %  | 52 %              | 54 %             | 58 %  |
| North Sea              | -20 %                          | -22 % | -93 %           |       | -22 % | -50 %             | -50 %            | -47 % |

| Decrease                           | 44    | 46    | 45    | 35    | 48    | 38    | 37    | 32    |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Increase                           | 16    | 14    | 15    | 19    | 12    | 22    | 23    | 28    |
| Uzbekistan                         | -21 % | -39 % | -84 % | 65 %  | -35 % | 50 %  | 65 %  | 112 % |
| United Kingdom                     | -55 % | -50 % | -86 % | -7 %  | -65 % | -28 % | -26 % | -23 % |
| Ukraine                            | -22 % | -6 %  | -66 % | -7 %  | -49 % | 18 %  | 26 %  | 46 %  |
| Turkmenistan                       | 58 %  | -8 %  | 6 %   | 152 % | -13 % | 128 % | 133 % | 163 % |
| Turkey                             | 20 %  | 0 %   | 0 %   | 28 %  | -23 % | 13 %  | 0 %   | -13 % |
| Tajikistan                         | 98 %  | 176 % | 272 % | 124 % | 122 % | 204 % | 239 % | 343 % |
| Switzerland                        | -40 % | -48 % | -60 % | -7 %  | -58 % | -37 % | -18 % | 2 %   |
| Sweden                             | -39 % | -29 % | -56 % | -11 % | -37 % | -33 % | -18 % | 4 %   |
| Spain                              | -45 % | -37 % | -84 % | -9 %  | -42 % | -31 % | -30 % | -29 % |
| Slovenia                           | -38 % | -41 % | -95 % | -10 % | -40 % | 17 %  | 12 %  | -19 % |
| Slovakia                           | -41 % | -47 % | -78 % | -24 % | -36 % | -15 % | -23 % | -44 % |
| Serbia                             | 0 %   | -13 % | -9 %  | -16 % | -30 % | 4 %   | 6 %   | 9 %   |
| Russian Federation (Asian part)    | -11 % | 1%    | 3 %   | -6 %  | -21 % | -1 %  | 9 %   | 25 %  |
| Russian Federation (European part) | -4 %  | 5 %   | -41 % | 38 %  | -5 %  | -26 % | 4 %   | 72 %  |
| Romania                            | -20 % | -8 %  | -78 % | 0 %   | 8 %   | 17 %  | 21 %  | 37 %  |
| Portugal                           | -44 % | -31 % | -82 % | -27 % | -52 % | -29 % | -35 % | -47 % |
| Poland                             | -14 % | 2 %   | -59 % | -16 % | -23 % | -14 % | -16 % | -18 % |
| Norway                             | -28 % | -61 % | -43 % | 0 %   | -39 % | -35 % | -29 % | 2 %   |

Table 3.5: Table 3.4 continued. Differences between emissions for 2000 and 2016 (based on gap–filled data as used in EMEP models).

#### **PM**<sub>coarse</sub> emissions

 $PM_{coarse}$  emissions in the EMEP domain have increased by 17% compared with 2000 levels.  $PM_{coarse}$  emissions have decreased in 32 countries or areas and increased in 28 (see Table 3.4). The largest increases are seen in Kazakhstan (+425%) and Tajikistan (+343%).

# 3.1.5 Gothenburg Protocol targets

The 1999 Gothenburg Protocol (GP) lists emission reduction commitments of  $NO_x$ ,  $SO_x$ , NMVOCs and  $NH_3$  for most of the Parties to the LRTAP Convention for the year 2010 (UN-ECE (1999)). These commitments should not be exceeded in 2010 and in subsequent years either.

In 2012, the Executive Body of the LRTAP Convention decided that adjustments to inventories may be applied in some circumstances (UNECE (2012)). From 2014 to 2017, adjustment applications of seven countries (Belgium, Denmark, Finland, France, Germany, Luxembourg and Spain) have been accepted and therefore these approved adjustments have to be subtracted for the respective countries when compared to the targets. Further, the reporting guidelines (UNECE (2014)) specify that some Parties within the EMEP region (i.e. Austria, Belgium, Ireland, Lithuania, Luxembourg, the Netherlands, Switzerland and the United Kingdom of Great Britain and Northern Ireland) may choose to use the national emission total calculated on the basis of fuels used in the geographic area of the Party as a basis for compliance with their respective emission ceilings. However, when considering only reported data, approved adjustments and fuel used data of the respective countries, Figure 3.6 indicates that Hungary could not reduce its NMVOC emissions with regard to the Gothenburg Protocol requirements, and that Croatia, Denmark, Germany, Norway and Spain are above their Gothenburg Protocol ceilings for NH<sub>3</sub>.



Figure 3.6: Distance to Gothenburg Protocol targets (based on reported data). Only Parties that ratified the Gothenburg Protocol are included. The United States and Canada have ratified the Gothenburg Protocol, but are not included here as the United States provided no data for 2016, and Canada did not submit their 2010 ceilings. \* Emission data based on fuels used for road transport. Approved adjustments are considered for Belgium (NO<sub>x</sub>), Denmark (NMVOCs, NH<sub>3</sub>), Finland (NH<sub>3</sub>), France (NO<sub>x</sub>), Germany (NO<sub>x</sub>, NMVOCs, NH<sub>3</sub>), Luxembourg (NO<sub>x</sub>, NMVOCs) and Spain (NO<sub>x</sub>).

#### **3.1.6** Contribution of individual sectors to total EMEP emissions

Figure 3.7 shows the contribution of each GNFR sector to the total emissions of individual air pollutants ( $SO_x$ ,  $NO_x$ , CO, NMVOC,  $NH_3$ ,  $PM_{2.5}$  and  $PM_{coarse}$ ). To provide a picture as complete as possible of the situation of the individual sectors to total EMEP emissions, data as used for the EMEP models (i.e. gap-filled data) were used for the calculations (see Section 3.3). Sea regions, North Africa and the remaining Asian areas were excluded for this analysis, as sectoral distributions are better reflected when only using country data.

It is evident that the combustion of fossil fuels is responsible for a significant part of all emissions. 47% of NO<sub>x</sub> emissions are produced by transport (F, G, H, I) but 22% of NO<sub>x</sub> also comes from large power plants (A).

NMVOC sources are distributed more evenly among the different sectors, such as 'E – Emissions from solvents' (26%), 'F – Road transport' (20%), 'D – Fugitive Emissions' (12%), 'B – Industry combustion' (11%), 'K – Manure management' (11%) and 'C – Other stationary combustion' (11%).

The main source of  $SO_x$  emissions are large point sources from combustion in energy and transformation industries (77%).

Ammonia arises mainly from agricultural activities (K and L), about 94%, while CO emissions originate primarily from 'F – Road transport' (37%) and 'C – Other stationary combustion' (30%).

The main sources of primary PM emissions are industry and other stationary combustion processes (up to 60%) and agriculture with a share of 12% to 36%.

Figure 3.8 illustrates the sector contribution for the sum of total emissions in the EMEP West region and the EMEP East region. The split between the EMEP West and EMEP East



Figure 3.7: GNFR sector contribution to national total emissions in 2016 for the EMEP domain without sea regions, North Africa and remaining Asian areas (only percentages above 10% are shown).

regions is according to http://www.ceip.at/emep\_countries. (Sea regions, North Africa and the remaining Asian areas are excluded.) The comparison of both graphs highlights some significant differences between West and East.

For NO<sub>x</sub> in the EMEP West region the most important sector is 'F – Road transport emissions' (38%), whereas in the EMEP East region the sector 'A – Public electricity and heat production' is of higher importance (33%).

For NMVOC in the EMEP West region the most relevant sector is 'E – Emissions from solvents' with a share of 40%. In the EMEP East region the same sector has a considerable lower share (10%), whilst the sector 'F – Road transport emissions' is of high importance (34%).

The main source of  $SO_x$  are 'A – Public electricity and heat production' and and 'B – Industry combustion'. These two sectors together contribute to 77% of  $SO_x$  emissions within the EMEP West and EMEP East areas.

The main source of  $NH_3$  emissions for both EMEP West and EMEP East is the agricultural sectors (K and L) with 92% and 95% respectively.

CO emissions arise mainly from 'F – Road transport emissions' (55%) in EMEP East. In the EMEP West region the main sector is 'C – Other stationary combustion' (42%).

For  $PM_{2.5}$  and  $PM_{10}$  'Other stationary combustion' (C) holds a significant share of the total emissions in the EMEP West area (53% and 38%, respectively), while for the EMEP East area the sector 'Industry combustion' (B) has the highest share, 31% and 30% of total  $PM_{2.5}$  and  $PM_{10}$  emissions, respectively. For  $PM_{coarse}$  emissions 'Industry combustion' (B) is a major source for both the EMEP East (29%) and the EMEP West (33%) region.



Figure 3.8: GNFR sector contribution to national total emissions in 2016 for the EMEP West and East regions (only percentages above 10% are visible).

# 3.2 Comparison of 2015 data (reported in 2017) and 2016 data (reported in 2018)

The comparison of 2015 emissions (reported in 2017) and 2016 emissions (reported in 2018) showed, that for 29 countries data changed by more than 15% for one or several pollutants (see Figure 3.9 and Table 3.6-3.7). These changes can be caused by real emission reductions or increases, or recalculations made by the respective country.

In five countries, both NO<sub>x</sub> and CO emissions changed by more than 15%. For NMVOCs, emissions changed in seven countries by more than 15%. For SO<sub>x</sub>, emissions changed by more than 15% in 14 countries, and for NH<sub>3</sub> in six countries. Of the PMs, emissions changed by more than 15% in nine countries for PM<sub>2.5</sub>, in 11 countries for PM<sub>10</sub> and in 19 countries for PM<sub>coarse</sub> (see Figure 3.9 and Table 3.6-3.7). The largest changes occurred in Luxembourg, Georgia, Lithuania and Slovakia.

For Luxembourg, a huge change for  $PM_{coarse}$  (+1 445%) is mainly from the NFR category '3De – Cultivated crops' of  $PM_{2.5}$  and  $PM_{10}$ . The change is caused by recalculations of the time series of  $PM_{2.5}$  and  $PM_{10}$  made by Luxembourg in 2016.

Georgia showed a large change in  $SO_x$  emissions (+93%), especially in the sector '1A2f – Stationary combustion in manufacturing industries and construction: Non-metallic minerals'. This change is caused by recalculations of the time series made by Georgia in 2016, as well as by switching from coal with low sulphur content to high sulphur coal in the production of non-metallic minerals (mostly in cement production) (for more details see the IIR of Georgia

| Pollutant       | Country | 2015 (kt) | 2016 (kt) | Diff. (kt) | Diff. (%) |
|-----------------|---------|-----------|-----------|------------|-----------|
| NOx             | ES      | 904.85    | 765.48    | -139.37    | -15%      |
| NOx             | IE      | 79.54     | 112.28    | 32.73      | 41%       |
| NOx             | мк      | 27.61     | 21.57     | -6.04      | -2.2%     |
| NOx             | SK      | 86.21     | 66.97     | -19.24     | -2.2%     |
| NOx             | TR      | 883.00    | 702.70    | -180.30    | -20%      |
| NMVOCs          | AT      | 112.89    | 137.62    | 24.73      | 22%       |
| NMVOCs          | СҮ      | 7.45      | 9.26      | 1.81       | 24%       |
| NMVOCs          | cz      | 139.36    | 212.57    | 73.20      | 53%       |
| NMVOCs          | LU      | 9.74      | 12.92     | 3.18       | 33%       |
| NMVOCs          | РТ      | 180.29    | 153.68    | -26.61     | -15%      |
| NMVOCs          | RO      | 313.14    | 258.42    | -54.73     | -17%      |
| NMVOCs          | SK      | 89.30     | 63.96     | -25.34     | -28%      |
| SO <sub>x</sub> | AZ      | 14.07     | 17.98     | 3.91       | 28%       |
| SO <sub>x</sub> | BG      | 142.06    | 104.92    | -37.13     | -26%      |
| SO <sub>x</sub> | СҮ      | 13.15     | 16.32     | 3.17       | 24%       |
| SO <sub>x</sub> | ES      | 273.29    | 217.99    | -55.29     | -20%      |
| SO <sub>x</sub> | GB      | 236.12    | 179.16    | -56.95     | -24%      |
| SO <sub>x</sub> | GE      | 4.98      | 9.61      | 4.63       | 93%       |
| SO <sub>x</sub> | IE      | 17.63     | 13.77     | -3.86      | -2.2%     |
| SO <sub>x</sub> | KZ      | 2091.94   | 1795.79   | -296.15    | -14%      |
| SO <sub>x</sub> | LT      | 18.23     | 15.44     | -2.79      | -15%      |
| SO <sub>x</sub> | LU      | 1.26      | 1.00      | -0.26      | -21%      |
| SO <sub>x</sub> | мк      | 76.41     | 58.67     | -17.74     | -23%      |
| SO <sub>x</sub> | PL      | 690.26    | 581.52    | -108.74    | -16%      |
| SO <sub>x</sub> | RO      | 151.87    | 107.67    | -44.20     | -29%      |
| SO <sub>x</sub> | SK      | 71.42     | 27.15     | -44.28     | -62%      |
| NH <sub>3</sub> | BG      | 33.62     | 50.29     | 16.67      | 50%       |
| NH₃             | СҮ      | 4.55      | 5.55      | 1.00       | 2 2%      |
| NH3             | GE      | 45.35     | 35.85     | -9.50      | -21%      |
| NH3             | HR      | 29.76     | 35.01     | 5.25       | 18%       |
| NH3             | LT      | 28.85     | 34.03     | 5.17       | 18%       |
| NH3             | LV      | 18.76     | 16.25     | -2.51      | -13%      |
| NH3             | TR      | 907.00    | 713.32    | -193.68    | -21%      |
| CO              | AZ      | 174.43    | 136.67    | -37.76     | -2.2%     |
| со              | BG      | 288.09    | 244.77    | -43.32     | -15%      |
| со              | CZ      | 503.06    | 797.81    | 294.75     | 59%       |
| со              | DK      | 326.99    | 244.03    | -82.97     | -2.5%     |
| со              | РТ      | 271.73    | 321.96    | 50.22      | 18%       |
| со              | TR      | 2351.00   | 2002.55   | -348.45    | -15%      |

Table 3.6: Reported emission changes between 2015 (reported in 2017) and 2016 (reported in 2018) over 15% for main pollutants.

Table 3.7: Reported emission changes between 2015 (reported in 2017) and 2016 (reported in 2018) over 15% for PM.

| Pollutant            | Country | 2015 (kt) | 2016 (kt) | Diff. (kt) | Diff. (%) |
|----------------------|---------|-----------|-----------|------------|-----------|
| PM <sub>2.5</sub>    | AZ      | 6.24      | 4.86      | -1.37      | -22%      |
| PM <sub>2.5</sub>    | СҮ      | 1.00      | 1.32      | 0.32       | 32%       |
| PM <sub>2.5</sub>    | CZ      | 23.73     | 39.30     | 15.56      | 66%       |
| PM <sub>2.5</sub>    | EE      | 9.15      | 7.48      | -1.67      | -18%      |
| PM <sub>2.5</sub>    | KZ      | 12.43     | 10.72     | -1.71      | -14%      |
| PM <sub>2.5</sub>    | LT      | 17.86     | 6.01      | -11.85     | -66%      |
| PM <sub>2.5</sub>    | LU      | 1.97      | 1.52      | -0.45      | -23%      |
| PM <sub>2.5</sub>    | МК      | 18.89     | 14.22     | -4.67      | -25%      |
| PM <sub>2.5</sub>    | RS      | 53.34     | 40.63     | -12.71     | -24%      |
| PM <sub>10</sub>     | AZ      | 15.71     | 13.18     | -2.52      | -16%      |
| PM <sub>10</sub>     | СҮ      | 1.72      | 2.06      | 0.34       | 20%       |
| PM <sub>10</sub>     | CZ      | 36.41     | 51.53     | 15.13      | 42%       |
| PM <sub>10</sub>     | EE      | 14.01     | 11.19     | -2.82      | -20%      |
| PM <sub>10</sub>     | ES      | 168.16    | 200.17    | 32.01      | 19%       |
| PM <sub>10</sub>     | GB      | 145.48    | 172.00    | 26.52      | 18%       |
| PM <sub>10</sub>     | IE      | 23.90     | 29.06     | 5.15       | 22%       |
| PM <sub>10</sub>     | LT      | 25.03     | 13.05     | -11.98     | -48%      |
| PM <sub>10</sub>     | МК      | 28.00     | 21.13     | -6.87      | -25%      |
| PM <sub>10</sub>     | RS      | 71.87     | 55.07     | -16.80     | -23%      |
| PM <sub>10</sub>     | TR      | 829.00    | 715.45    | -113.55    | -14%      |
| PM <sub>coarse</sub> | BE      | 10.46     | 8.88      | -1.58      | -15%      |
| PM <sub>coarse</sub> | BG      | 21.21     | 15.94     | -5.27      | -25%      |
| PM <sub>coarse</sub> | DE      | 121.87    | 102.29    | -19.58     | -16%      |
| PM <sub>coarse</sub> | EE      | 4.85      | 3.70      | -1.15      | -24%      |
| PM <sub>coarse</sub> | ES      | 43.65     | 71.74     | 28.08      | 64%       |
| PM <sub>coarse</sub> | FI      | 10.16     | 13.51     | 3.35       | 33%       |
| PM <sub>coarse</sub> | FR      | 101.17    | 84.90     | -16.27     | -16%      |
| PM <sub>coarse</sub> | GB      | 40.71     | 63.04     | 22.33      | 55%       |
| PM <sub>coarse</sub> | HU      | 16.60     | 19.79     | 3.20       | 19%       |
| PM <sub>coarse</sub> | IE      | 9.99      | 13.59     | 3.59       | 36%       |
| PM <sub>coarse</sub> | IT      | 19.10     | 31.49     | 12.39      | 65%       |
| PM <sub>coarse</sub> | LU      | 0.05      | 0.74      | 0.69       | 1445%     |
| PM <sub>coarse</sub> | LV      | 5.68      | 7.78      | 2.10       | 37%       |
| PM <sub>coarse</sub> | МК      | 9.11      | 6.91      | -2.20      | -24%      |
| PM <sub>coarse</sub> | PL      | 96.55     | 113.66    | 17.11      | 18%       |
| PM <sub>coarse</sub> | РТ      | 12.34     | 17.59     | 5.25       | 43%       |
| PM <sub>coarse</sub> | RO      | 38.82     | 30.54     | -8.28      | -21%      |
| PM <sub>coarse</sub> | RS      | 18.53     | 14.44     | -4.09      | -22%      |
| PM <sub>coarse</sub> | TR      | 829.00    | 715.45    | -113.55    | -14%      |



Figure 3.9: Emission changes between 2015 and 2016 in reported data (only changes larger than 15% are shown).

in 2018<sup>12</sup>).

For Lithuania, significant changes for  $PM_{2.5}$  (-66%) and  $PM_{10}$  (-48%) originate mainly from the NFR category '1A4bi – Residential: Stationary'. These changes are caused by recalculations of the time series made by Lithuania in 2016 (for more details see the IIR of Lithuania in 2018<sup>13</sup>).

In Slovakia, data reveal a great change of  $SO_x$  emissions (-62%) between 2015 and 2016, mainly caused by the NFR category '1A1a – Public electricity and heat production'. These emissions originated from the source 'Slovenské elektrárne'. According to the records, this facility burnt twice the amount of brown coal in 2015 as in the previous year, and in 2016, emissions dropped again significantly (for more details see the IIR of Slovakia 2018<sup>14</sup>).

# **3.3** Data sets for modelers 2018

Data used by CEIP were reported by the Parties to the LRTAP Convention as sectoral emissions (NFR14) and National Total emissions according to the UNECE guidelines for reporting emissions and projections data under the LRTAP Convention, Annex I (UNECE (2014)).

The sector data were aggregated to 13 GNFR sectors. In several cases, no data were submitted by the countries, or the reporting is not complete or contains errors. Before these emission data can be used by modelers, missing or erroneous information have to be filled in. To gap-fill those missing data, CEIP typically applies different gap-filling methods. The

<sup>&</sup>lt;sup>12</sup>http://webdab1.umweltbundesamt.at/download/submissions2018/GR\_IIR2018. zip?cgiproxy\_skip=1

<sup>&</sup>lt;sup>13</sup>http://cdr.eionet.europa.eu/lt/un/clrtap/iir/envwqqayw/

<sup>&</sup>lt;sup>14</sup>http://cdr.eionet.europa.eu/sk/un/clrtap/iir/envwtcyiq/
gap-filling procedure in 2018 is fully documented in in a technical report (Technical report CEIP 01/2018), which can be downloaded from the CEIP website<sup>15</sup>.

The countries where data were (partly) replaced in 2018 are Armenia, Azerbaijan, Belarus, Bulgaria, Georgia, Iceland, Ireland, Kazakhstan, Lithuania, Luxembourg, Malta, the Republic of Moldova, the Russian Federation, Slovakia, the Former Yugoslav Republic of Macedonia, Turkey and the Ukraine (see Appendix 3 or Technical report CEIP 01/2018).

After the gap-filling, sector emissions are spatially distributed over the EMEP grid. In 2018, data series for the years 2000 to 2016 were provided for the pollutants  $NO_x$ , NMVOCs,  $SO_x$ ,  $NH_3$ , CO,  $PM_{2.5}$ ,  $PM_{10}$  and  $PM_{coarse}^{-16}$ .

In cases, where data are in all probability erroneous, these data are replaced. If data in such cases will not be replaced, it is likely to get a wrong picture in the gridded maps. In 2018, data of 17 countries were (partly) replaced, including replacements of  $PM_{2.5}$  and  $PM_{10}$  because of negative values for  $PM_{coarse}$ . Data for  $PM_{coarse}$  are calculated as the difference between  $PM_{10}$  and  $PM_{2.5}$ . In all cases, in a later step the National Totals were corrected (e.g. by the sum of the sectors).

### 3.3.1 Reporting of gridded data

2017 was the first year with reporting obligation of gridded emissions in the new grid resolution of  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude. By June 2018, twenty-nine of the 48 countries which are considered to be part of the EMEP area reported sectoral gridded emissions in the new resolution. One country reported only gridded national total values (instead of sectoral data).

The majority of gridded sectoral emissions in  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution have been reported for the year 2015 (28 countries). For the year 2016, gridded sectoral emissions have been reported by three countries. Two of the three countries reported too late, which is why these data could not be used for preparing gridded emissions in 2018.

Only seven countries reported gridded emissions additionally for previous years (four countries for the years 1990, 1995, 2000, 2005 and 2010; one country for the whole time series from 1980 to 2016; one country for the whole time series from 1990 to 2015 and one country for the year 2014).

Reported gridded sectoral data in  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution, which can be used for the preparation of gridded emissions for modelers, covers less than 20% of the cells within the geographic EMEP area. For remaining areas missing emissions are gap-filled and spatially distributed by expert estimates. Reported grid data can be downloaded from the CEIP website<sup>17</sup>.

An overview of reported gridded data available in the years 2017 and 2018 is provided in Table 3.8, while an example map of the gap-filled and gridded NO<sub>x</sub> emissions in 2016 in  $0.1^{\circ} \times 0.1^{\circ}$  longitude-latitude resolution is shown in Figure 3.10.

<sup>&</sup>lt;sup>15</sup>http://www.ceip.at/ms/ceip\_homel/ceip\_home/ceip\_reports/

<sup>&</sup>lt;sup>16</sup>http://www.ceip.at/ms/ceip\_home1/ceip\_home/webdab\_emepdatabase/

emissions\_emepmodels/

<sup>&</sup>lt;sup>17</sup>http://www.ceip.at/status\_reporting

| Country          | 2017                                  | 2018                                  | Comments                                                                                                                         |
|------------------|---------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Austria          | 2015                                  | 2015                                  |                                                                                                                                  |
| Belgium          | 2015                                  | 2015                                  |                                                                                                                                  |
| Bulgaria         | 2015                                  | 2015                                  |                                                                                                                                  |
| Croatia          | 1990, 1995, 2000,<br>2005, 2010, 2015 | 1990, 1995, 2000,<br>2005, 2010, 2015 |                                                                                                                                  |
| Czech Republic   | 2015                                  | 2015                                  |                                                                                                                                  |
| Denmark          | 2015                                  | 2015                                  |                                                                                                                                  |
| Finland          | 2014, 2015                            | 2014, 2015,<br>2016 <sup>(a)</sup>    | <sup>(a)</sup> Finland reported gridded emissions<br>too late to be considered for the<br>preparation of gridded data in 2018    |
| France           |                                       | 2015                                  |                                                                                                                                  |
| FYR of Macedonia |                                       | 2015                                  |                                                                                                                                  |
| Georgia          |                                       | 2015                                  |                                                                                                                                  |
| Germany          | 1990, 1995, 2000,<br>2005, 2010, 2015 | 1990, 1995, 2000,<br>2005, 2010, 2015 |                                                                                                                                  |
| Greece           |                                       | 2015                                  |                                                                                                                                  |
| Hungary          | 2015 <sup>(b)</sup>                   | 2015                                  | <sup>(b)</sup> Hungary reported gridded emissions<br>too late to be considered for the<br>preparation of gridded data in 2017    |
| Ireland          | 2015                                  | 2015                                  |                                                                                                                                  |
| Italy            |                                       | 2015 <sup>(c)</sup>                   | <sup>(c)</sup> Reported gridded data from Italy had<br>to be replaced by EDGAR proxies                                           |
| Latvia           | 2015                                  | 2015                                  |                                                                                                                                  |
| Lithuania        | 2015 <sup>(d)</sup>                   | 2015 <sup>(d)</sup>                   | <sup>(d)</sup> Lithuania reported gridded emissions<br>only on national total level, which could<br>not be used for the gridding |
| Luxembourg       | 2005, 2010, 2015                      | 2005, 2010, 2015                      |                                                                                                                                  |
| Malta            |                                       | 2016 <sup>(e)</sup>                   | <sup>(e)</sup> Malta reported gridded emissions too<br>late to be considered for the preparation<br>of gridded data in 2018      |
| Monaco           | 2014, 2015                            | 2014, 2015                            |                                                                                                                                  |
| Netherlands      |                                       | 1990, 1995, 2000,<br>2005, 2010, 2015 |                                                                                                                                  |
| Norway           | 1990, 1995, 2000,<br>2005, 2010, 2015 | 1990, 1995, 2000,<br>2005, 2010, 2015 |                                                                                                                                  |
| Poland           | 2014, 2015                            | 2014, 2015 <sup>(f)</sup>             | <sup>(f)</sup> For Poland, the spatial disaggregation<br>of sector 'F – Road Transport' had to be<br>replaced by EDGAR proxies   |
| Portugal         | 2015                                  | 2015 <sup>(g)</sup>                   | <sup>(B)</sup> For Portugal, the spatial disaggregation<br>of sector 'F – Road Transport' had to be<br>replaced by EDGAR proxies |
| Romania          | 2005                                  | 2005, 2015                            |                                                                                                                                  |
| Slovakia         | 2015                                  | 2015                                  |                                                                                                                                  |
| Slovenia         | 2015                                  | 2015                                  |                                                                                                                                  |
| Spain            | 1990-2015                             | 1990-2015                             |                                                                                                                                  |
| Switzerland      | 1980-2015                             | 1980-2016                             |                                                                                                                                  |
| United Kingdom   | 2010, 2015                            | 2010, 2015                            |                                                                                                                                  |

Table 3.8: Reported gridded emissions available in the years 2017 and 2018.



Figure 3.10: Visualized gap-filled and gridded NO<sub>x</sub> emissions in  $0.1^{\circ} \times 0.1^{\circ}$  long-lat resolution.

### 3.3.2 Model evaluation for countries that submitted gridded emissions in $0.1^{\circ} \times 0.1^{\circ}$ resolution for the first time in 2018

In 2017, 23 countries reported gridded emissions in  $0.1^{\circ} \times 0.1^{\circ}$  resolution, 22 in time for being considered for the preparation of gridded data for the model runs. EMEP MSC-W model runs were performed using these new emissions and compared to model runs using emissions in the 'old'  $50 \times 50$  km<sup>2</sup> resolution (but with the same national totals). Both sets of model runs were compared to AirBase data (excluding traffic stations). In general the model performance improved for the model runs using the finer resolution emissions, especially for NO<sub>2</sub> (Solberg et al. 2017).

This year, 7 additional countries reported gridded data (in addition to Hungary that reported too late in 2017). However, the data from Italy could not be used. Malta reported the gridded emissions too late to be taken into account this year. This means that in this year's model calculations, the emissions of the following countries have new gridding: France, Georgia, FYR Macedonia, Greece, the Netherlands and Hungary. For these countries, we have compared the performance of the status run for 2016 (see Chapter 2) to the performance of the model results for 2015 from last year's report. Both model data sets have been compared to AirBase observations for their respective years. Georgia did not report any measurements for NO<sub>2</sub> to AirBase in 2015 or 2016, and FYR Macedonia did only report NO<sub>2</sub> measurements for 2015, thus the comparison has been done for 4 countries.

Clearly, this is not a consistent comparison, as the meteorological year is different, the national total emissions are different and the observations are different. Ideally 2016 should have been rerun with  $2016 50 \times 50 \text{ km}^2$  emission, or  $2015 50 \times 50 \text{ km}^2$  emissions. Neverthe-

less, the comparison indicates that for the Netherlands and Hungary, the model performance against AirBase  $NO_2$  data is better using the new emissions (see Figure 3.11). For France and Greece, the number of measurements available in 2015 and 2016 is very different, thus it is difficult to interpret whether the new emissions improved the model results.



Figure 3.11: Model results for NO<sub>2</sub>  $(0.1 \times 0.1^{\circ})$  for 2015 (gridded by CEIP) and 2016 (gridded by country) versus AirBase observations for the respective years.

# 3.3.3 Time series from 2000 to 2016 in $0.1^{\circ} \times 0.1^{\circ}$ longitude/latitude resolution

For this year it was agreed with the modelers to perform gap-filling and gridding for the whole time series from 2000 to 2016 in  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution on GNFR sector level.

The  $0.1^{\circ} \times 0.1^{\circ}$  GNFR grids of NO<sub>x</sub>, NMVOCs, SO<sub>x</sub>, NH<sub>3</sub>, CO, PM<sub>2.5</sub>, PM<sub>10</sub> and PM<sub>coarse</sub> were gridded based on the gridding system developed by CEIP. The system is module based and uses as a first step reported gridded emission data for each country and sector where it is available and usable. If no reported gridded data in the  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution is available, data from the Emission Database for Global Atmospheric Research (EDGAR) is used as proxy for spatial disaggregation, upgraded by point source information available under

the European Pollutant Release and Transfer Register (E-PRTR). The system also uses data from FMI which is based on AIS tracking data for the spatial disaggregation of international shipping emissions.

Reported gridded data in  $0.1^{\circ} \times 0.1^{\circ}$  longitude/latitude resolution was used from Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, France, Georgia, Germany, Greece, Hungary, Ireland, Latvia, Luxembourg, FYR of Macedonia, Monaco, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Switzerland and United Kingdom.

For Poland and Portugal the spatial disaggregation of sector F - Road Transport' had to be replaced by EDGAR proxies.

Finland and Malta reported their gridded emissions too late and therefore it could not be used for the preparation of spatial distributed emission data in 2018.

Reported gridded data from Italy had to be completely replaced by EDGAR proxies.

#### **3.3.4** International shipping

Under this category emissions from international shipping occurring in different European seas are accounted (European part of the North Atlantic, Baltic Sea, Black Sea, Mediterranean Sea and North Sea). This year's update uses global shipping emissions from FMI (Finnish Meteorological Institute) for the year 2015 (and also for 2011 in case of  $NO_x$  and  $SO_x$  in Baltic and North Sea), based on AIS (Automatic Identification System) tracking data. For the year 2016 a copy of the FMI emission values for 2015 was used.

For historical shipping emissions the FMI data was adjusted regarding trends from data developed within the EU Horizon2020 project MACC-III (MACC-III 2015) and the ICCT Report (Olmer et al. 2017).

NMVOC emissions from international shipping have been estimated to be 10.9% of the CO emissions.

The new emission trends from international shipping in the EMEP area are shown in Figure 3.12. Due to the selective implementation of the Sulphur Emission Control Areas (SECAs) on the North Sea and Baltic Sea only, the emission trends differ between those seas and the other seas.



Figure 3.12: International shipping emission trends in the EMEP area based on FMI data (2015 and 2011), FMI data adjusted regarding MACC-III (2000-2011) and FMI data adjusted regarding ICCT (2012-2014).

Figure 3.13 illustrates the differences of  $NO_x$  and  $SO_x$  emissions from international shipping used until 2017 (MACC-III) and revised in 2018 (FMI data adjusted regarding MACC-III and ICCT trend) for the different sea areas.



Figure 3.13: Example of comparisons between international shipping emissions used until 2017 (MACC-III) and revised in 2018 (FMI data adjusted regarding MACC-III and ICCT trend).

## References

- Baumgartner, J., Zhang, Y., Schauer, J. J., Huang, W., Wang, Y., and Ezzati, M.: Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China, PNAS 111, 36, 13 229–13 234, doi:doi:10.1073/pnas.1317176111, 2014.
- Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., 118, 5380–5552, doi:10.1002/jgrd.50171, 2013.
- Burgstaller, J., Mareckova, K., Pinterits, M., Tista, M., Ullrich, B., and Wankmüller, R.: Inventory review 2018. Review of emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded and LPS data, EMEP/CEIP 4/2018, EEA/CEIP Vienna, 2018.
- EMEP/EEA: EMEP/EEA air pollutant emission inventory guidebook 2013, 12/2013, European Environment Agency, EEA, URL http://www.eea.europa.eu/ publications/emep-eea-guidebook-2013, 2013.
- EMEP/EEA: EMEP/EEA air pollutant emission inventory guidebook 2016, 21/2016, European Environment Agency, EEA, URL http://www.eea.europa.eu/ publications/emep-eea-guidebook-2016, 2016.
- Janssen, N. A. H., Gerlofs-Nijla, M. E., Lanki, T., Salonen, R. O., Cassee, F., Hoek, G., Fischer, P., Brunekreef, B., and Krzyzanowsi, M.: Health effects of black carbon, World Health Organization, pp. 1–96, URL http://www.euro.who.int/\_\_data/ assets/pdf\_file/0004/162535/e96541.pdf, 2012.
- JRC/PBL: Emission Database for Global Atmospheric Research (EDGAR), Global Emissions EDGAR v4.3.1., European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), URL http://edgar.jrc.ec.europa.eu, 2016.
- Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmospheric Chemistry and Physics, 17, 8681–8723, URL http://www.atmoschem-phys.net/17/8681/2017/acp-17-8681-2017.pdf, 2017.
- MACC-III: Report on the update of global and European anthropogenic emissions., Tech. Rep. COPERNICUS Grant agreement 633080, MACC-III (Monitoring Atmospheric Composition and Climate, 2015.
- Olmer, N., Comer, B., Roy, B., Mao, X., and Rutherford, D.: Greenhouse gas emissions from global shipping, 2013-2015, The international Council on Clean Transportation (ICCT), URL https://www.theicct.org/publications/GHGemissions-global-shipping-2013-2015, 2017.

- Romppanen, S.: Arctic climate governance via EU law on black carbon? Review of European, Comparative and International Environmental Law (RECIEL), Special Issue: Arctic Environmental Governance, 27/1, 45–54, doi:doi:10.1111/reel.12241, URL https://doi.org/10.1111/reel.12241, 2018.
- Sand, M., Berntsen, T. K., von Salzen, K., Flanner, M. G., Langner, J., and Victor, D. G.: Response of Arctic temperature to changes in emissions of short-lived climate forcers, Nat. Clim. Change, 6, 286–290, doi:10.1038/nclimate2880, 2016.
- Solberg, S., Fagerli, H., and Tsyro, S.: EMEP MSC-W model runs using the EMEP emissions in fine resolution - comparison to observations, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2017, The Norwegian Meteorological Institute, Oslo, Norway, 2017.
- UNECE: Protocol to the 1979 Conventionon on long-range transboundary air pollution to abate acidification, eutrophication and ground-level ozone, Tech. rep., UNECE, URL http://www.unece.org/fileadmin/DAM/env/lrtap/fulltext/ 1999Multi.E.Amended.2005.pdf, 1999.
- UNECE: Decision 2012/3: Adjustments under the Gothenburg Protocol to emission reduction commitments or to inventories for the purposes of comparing total national emissions with them, Tech. Rep. ECE/EB.AIR/111, UNECE, URL http://www.unece.org/fileadmin/DAM/env/documents/2013/air/ ECE\_EB.AIR\_111\_Add.1\_\_ENG\_DECISION\_3.pdf, 2012.
- UNECE: Guidelines for reporting emission data under the Convention on Long-range Transboundary Air Pollution, Tech. Rep. ECE/EB.AIR/130, UNECE, URL http: //www.ceip.at/fileadmin/inhalte/emep/2014\_Guidelines/ece.eb. air.125\_ADVANCE\_VERSION\_reporting\_guidelines\_2013.pdf, 2014.
- Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Schuster, G. L., Chevallier, F., Samset, B. H., Liu, J., Piao, S., Valari, M., and Tao, S.: Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations., J. Geophys. Res. Atmos., 121, 5948–5971, doi:doi:10.1002/2015JD024326, URL https://agupubs. onlinelibrary.wiley.com/doi/epdf/10.1002/2015JD024326, 2016.

## CHAPTER 4

## Model calculations in fine resolution for 2000-2016

#### Svetlana Tsyro and Augustin Mortier

The main purpose of this chapter is to introduce long-term modelling results obtained using a consistent time series for 2000-2016 of the new EMEP  $0.1^{\circ} \times 0.1^{\circ}$  emissions. The latest EMEP MSCW model version, set up at  $0.1^{\circ} \times 0.1^{\circ}$  resolution, is applied in those simulations, thus ensuring a consistent set of model results. Furthermore, we introduce a new trend interface under development at MSC-W. A profound trend analysis is beyond the scope of this chapter, still all the model data is made publically available at www.emep.int. The earlier EMEP TFMM trend analysis studies, performed within the Eurodelta-Trends exercise, can be found in (e.g. Colette et al. (2017); Theobald et al. (2018); and more in preparation)

## 4.1 Model setup

A series of runs has been performed with the EMEP MSC-W model (version rv4.17a) on the  $0.1^{\circ} \times 0.1^{\circ}$  grid for the period of 2000-2016. The runs were driven by ECMWF-IFS meteorology and used a consistent set of emissions provided by CEIP (see Chapter 3). Daily emissions from forest fires were from the Fire INventory from NCAR (FINN) for 2002-2016, whereas for 2000 and 2001 (unavailable from FINN), monthly averages over 2005-2015 were used. The boundary conditions for the main gaseous and aerosol species were based on climatological observed values with prescribed trends in trans-Atlantic fluxes, while the Mace Head correction has been used for ozone. The boundary conditions for natural particles of sea salt and mineral dust were the same as in the status run, namely 5-year monthly average concentrations, derived from EMEP MSC-W global runs, kept invariable over the calculation period.

## 4.2 Modelled and observed pollution levels for 2000-2016

Some examples of modelled annual time series and their comparison with observations are presented here. Figures 4.1 - 4.4 show annual series of pollutant concentrations in air and precipitation, averaged over a set of selected EMEP sites with appropriate data coverage over the 17-year period. The same suite of sites was used in the EMEP TFMM assessment (Colette et al. 2016), but here they are extended with data for additional years (2013-2016).

It should be noted that the number of the sites with observations are not necessarily exactly the same for each of the years, which brings some inconsistency in the shown trends (such as abrupt drops or peaks of pollutant levels in some years). This is a particular problem for  $PM_{10}$  and  $PM_{2.5}$ , for which just a few sites with measurements were available in 2000 and 2001, with the majority of the long term observations of these parameters starting in 2002. Thus consistent time series analysis for observations to be compared to the model results are not made. However, only the sites for which both observational and model data exist for any specific year are included in the time series plots in Figures 4.1- 4.4.

The figures show that there is a reasonable agreement between the modelled and observed 2000-2016 series of annual mean concentrations, averaged over the considered sites. The 25 and 75 percentiles, represented with shaded areas, show the spread in the modelled and observed concentrations at the considered sites.



Figure 4.1: Modelled (red) and observed (blue) time series of annual mean concentrations in air for  $SO_2$  (36 sites),  $SO_4^{2-}$  (34 sites), total  $NO_3^{-}$  and total  $NH_4$  (34 sites) for the period 2000-2016. Shown are: mean concentrations (colour lines), 25 and 75 percentiles (shaded areas with corresponding colours)



Figure 4.2: Same as in Figure 4.1, but for mean and max ozone (104 sites).



Figure 4.3: Same as in Figure 4.1, but for  $PM_{10}$  (27 sites) and  $PM_{2.5}$  (17 sites).



Figure 4.4: Same as in Figure 4.1, but for concentrations in precipitation of oxidised sulphur and oxidised and reduced nitrogen (64 sites).

### 4.3 EMEP trends interface

An online interface has been developed for the visualization of the model simulated trends (http://aerocom.met.no/trends/EMEP/). This tool is based on the "Aerosol Trends" development interface for the ACTRIS project, that allows the visualization of the trends for different aerosol parameters, observed or modeled, such as AOD,  $SO_4^{2-}$  deposition or aerosol number concentration (http://aerocom.met.no/trends/index-dev.php).

The EMEP trends interface is built in HTML/CSS and javascript and uses the highcharts visualization library. It provides a dynamic map that shows trends at all EMEP sites over Europe, as well as individual time series for each of the EMEP stations. The time series are also available for all individual countries, by averaging the concentrations over all sites within the country of interest. Note that all EMEP stations are shown in the map, meaning that not every single site has observations of all modelled components.

The overall map shows the trends at each station in three different colors: increase (red), decrease (blue) or no significant trend (green), as illustrated in Figure 4.5 for  $PM_{10}$ . The significance of the trend is determined with the Mann-Kendall test: if the p-value is smaller than 0.1, the trend is classified as significant. Then, the trend is quantified by calculating the Theil-Sen slope, which is less sensitive to the outliers than the linear regression, and converted to a relative trend (in percent per year) with respect to the first year of the series (2000 in this case).



Figure 4.5: European  $PM_{10}$  trends computed at EMEP stations between 2000 and 2016.

The trend line is shown in a dynamic chart on the top of daily and monthly time series (Figure 4.6). The interface facilitates zooming-in, zooming-out, hiding/showing different elements of the chart. It also provides possibility to save the figure in various formats.

The yearly averages over all sites are also available in the bar-diagram just below the map (Figure 4.7). A click on a specific year in this window triggers a x-zoom in the previous chart, namely in Figure 4.6.



Figure 4.6: Daily and monthly total  $PM_{10}$  concentration at Birkenes between 2000 and 2016.



Figure 4.7: Yearly total PM<sub>10</sub> concentration at Birkenes between 2000 and 2016.

The present version of the interface also allows visualization of the contribution of different species to the total  $PM_{10}$  with a stacked time series (Figure 4.8).



Figure 4.8: Chemical species contributing to total  $PM_{10}$  at Birkenes for the year 2016.

When the species tab on the top of the map is selected, the statistics table is replaced with a pie-chart showing the relative contribution of each species for the selected time period (Figure 4.9).

All of these charts are available both for individual station and as country averages (calculated as the average of the EMEP sites within every specific country). For now, only  $PM_{10}$ results are implemented, but the work is on-going to also incorporate other components (such as SIA aerosols,  $PM_{2.5}$ ,  $SO_2$ ,  $NO_2$  etc.).

The interface will also be extended to include EMEP measurement data where these are available. Furthermore, we are working to include source categories in the interface. Model runs where emission sectors (traffic, industry, agriculture, residential heating) are reduced in separate runs have been performed for 2000-2016 - consistent with the setup described in 4.1. Some work remains to decide on how to interpret and visualize the results.



Figure 4.9: Relative contributions of the chemical species contributing to total  $PM_{10}$  at Birkenes for the year 2016.

### References

- Colette, A., Aas, W., Banin, L., Braban, C., Ferm, M., González Ortiz, A., Ilyin, I., Mar, K., Pandolfi, M., Putaud, J.-P., Shatalov, V., Solberg, S., Spindler, G., Tarasova, O., Vana, M., Adani, M., Almodovar, P., Berton, E., Bessagnet, B., Bohlin-Nizzetto, P., Boruvkova, J., Breivik, K., Briganti, G., Cappelletti, A., Cuvelier, K., Derwent, R., D'Isidoro, M., Fagerli, H., Funk, C., Garcia Vivanco, M., González Ortiz, A., Haeuber, R., Hueglin, C., Jenkins, S., Kerr, J., de Leeuw, F., Lynch, J., Manders, A., Mircea, M., Pay, M., Pritula, D., Putaud, J.-P., Querol, X., Raffort, V., Reiss, I., Roustan, Y., Sauvage, S., Scavo, K., Simpson, D., Smith, R., Tang, Y., Theobald, M., Tørseth, K., Tsyro, S., van Pul, A., Vidic, S., Wallasch, M., and Wind, P.: Air Pollution trends in the EMEP region between 1990 and 2012., Tech. Rep. Joint Report of the EMEP Task Force on Measurements and Modelling (TFMM), Chemical Co-ordinating Centre (CCC), Meteorological Synthesizing Centre-East (MSC-E), Meteorological Synthesizing Centre-West (MSC-W) EMEP/CCC Report 1/2016, Norwegian Institute for Air Research, Kjeller, Norway, URL http://www.unece.org/fileadmin/DAM/env/documents/2016/AIR/ Publications/Air pollution trends in the EMEP region.pdf, 2016.
- Colette, A., Andersson, C., Manders, A., Mar, K., Mircea, M., Pay, M.-T., Raffort, V., Tsyro, S., Cuvelier, C., Adani, M., Bessagnet, B., Bergstrom, R., Briganti, G., Butler, T., Cappelletti, A., Couvidat, F., D'Isidoro, M., Doumbia, T., Fagerli, H., Granier, C., Heyes, C., Klimont, Z., Ojha, N., Otero, N., Schaap, M., Sindelarova, K., Stegehuis, A. I., Roustan, Y., Vautard, R., van Meijgaard, E., Vivanco, M. G., and Wind, P.: EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990-2010, GEOSCIEN-TIFIC MODEL DEVELOPMENT, 10, 3255–3276, doi:10.5194/gmd-10-3255-2017, 2017.
- Theobald, M., Vivanco, M. G., Colette, A., Aas, W., Andersson, C., Ciarelli, Giancarloand Couvidat, F., Cuvelier, K., Manders, A., Mircea, M., Pay, M.-T., Tsyro, S., Adani, M., Bergstrom, R., Bessagnet, B., Briganti, G., Cappelletti, A., D'Isidoro, M., Fagerli, H., Mar, K., Otero, N., Raffort, V., Roustan, Y., Schaap, M., and Wind, P.: An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010, submitted to Atmos. Chem. Physics 12 July 2018, 2018.

# Part II

# **Research Activities**

## CHAPTER 5

## Source receptor matrices in the new EMEP grid

# Hilde Fagerli, Svetlana Tsyro, Anna Benedictow, Heiko Klein, Ágnes Nyíri and Alvaro Valdebenito

Last year it was the first time Parties to the Convention reported emissions in the new grid in  $0.1^{\circ} \times 0.1^{\circ}$  resolution and longitude-latitude projection (see chapter 1.3). This year, these fine scale emissions are used in calculations of source receptor matrices (SRMs). Although status runs and trend runs are performed in the  $0.1^{\circ} \times 0.1^{\circ}$  resolution (see chapter 2), it was planned from the beginning to calculate SRMs in a reduced resolution. Firstly, our assumption was that very fine resolution is less important for SRMs, as it is the country to country contribution that is most important. Secondly, a full set of SRMs in  $0.1^{\circ} \times 0.1^{\circ}$  resolution requires an enormous amount of CPU hours and it would be difficult to finalize such model runs within the current timelines. (Emissions used for modelling are created by CEIP based on the reported data and delivered to MSC-W in June. In early August source receptor calculations has to be finalized and post-processed in order to present them to the Joint Session of the EMEP Steering Body and Working Group of Effects in September.)

In order to take full advantage of the high resolutions now available, we made another update at the same time: an update of the country border data set.

In this chapter we have selected some countries and analyzed (1) the effect of the choice of the resolution of the SRM calculations, and (2) how the country border data set affects the SRMs. The aim of this work was to make a choice of the resolution to be used for the SR calculations.

## 5.1 Experimental setup

We have performed SR calculations for 5 countries that represent different geographical parts of Europe, different sizes and different emission regimes: Bulgaria (BG), Italy (IT), The Netherlands (NL), Norway (NO) and Poland (PL).

All the calculations are performed using meteorological conditions for 2016, with 2015

emissions as they were reported last year in  $0.1^{\circ} \times 0.1^{\circ}$  resolution (EMEP Status Report 1/2017 2017). The Mace Head correction (see Simpson et al. (2012)) for ozone boundary conditions came from a climatology, as 2016 was not yet available at that time, while other boundary conditions and forest fires were set for 2016.

Meteorological data were created in 3 resolutions:  $0.1^{\circ} \times 0.1^{\circ}$  (0101),  $0.3^{\circ} \times 0.2^{\circ}$  (0302) and  $0.4^{\circ} \times 0.3^{\circ}$  (0403) longitude-latitude. The vertical levels were adapted to 20 vertical levels in correspondence with the original ECMWF meteorology, with the height of the lowest layer of approximately 50 meters. The same vertical structure has been used for all three meteorological data sets, and this is the same vertical structure which is used in the status runs throughout this report.

Emissions are interpolated on the fly to the same resolution as the meteorology, i.e. we used 3 sets of emissions (in  $0.1^{\circ} \times 0.1^{\circ}$ ,  $0.3^{\circ} \times 0.2^{\circ}$  and  $0.4^{\circ} \times 0.3^{\circ}$  resolutions).

The EMEP MSC-W model version used here is rv4.17, which is a preliminary version of rv4.17a used for the status runs in chapter 2 (see also chapter 8). It can be noted that there have been many changes in chemistry, deposition, vertical resolution, and emissions in the current rv4.17 setup compared to the rv4.9 source receptor matrix calculations presented in EMEP Status Report 1/2016. For example, the increased NO<sub>2</sub> deposition rates discussed in Simpson et al. 2017 can lead to increased local-scale deposition in some regions. However, such changes are complex and beyond the scope of this chapter. Here we focus on changes associated with resolution and country border data.

For all 5 countries and 3 resolutions, 5 different reduction runs were performed (altogether  $5 \times 3 \times 5 = 75$  runs). In these 5 reduction runs, the respective country emissions of SO<sub>x</sub>, NO<sub>x</sub>, NH<sub>3</sub>, NMVOC, and PPM<sub>fine</sub>+PPM<sub>coarse</sub> were reduced by 15%. The effect of these emission reductions on other countries have been calculated by subtracting the reduction run results from the model run with no reductions (the base run). The effect of emission reductions of the 5 different chemical compounds (SO<sub>x</sub>, NO<sub>x</sub>, NH<sub>3</sub>, NMVOC, and PPM<sub>fine</sub>+PPM<sub>coarse</sub>) have then been added.

#### 5.1.1 Country borders

The country borders that are used to establish how much of the emissions end up in the different countries have been updated this year. The 'old' country border data set was a manually created data set with country borders given in a  $50 \times 50 \text{km}^2$  polar stereographic grid. The new borders correspond to the grid definitions that CEIP has used for the emissions in the EMEP  $0.1^{\circ} \times 0.1^{\circ}$  grid. The data source for the country borders is the ESRI maps "Europe Countries" for Europe and "World Countries 2008" for all countries/areas outside Europe (published in April 2008). The separation of the different sea areas is based on the  $50 \times 50 \text{km}^2$  polar stereographic grid.

## 5.2 Choice of model resolution for the source receptor matrices

An overview of the different data sets analyzed and their corresponding abbreviations are given in Table 5.1.

The source receptor matrices for the 3 resolutions (and different country border data) are compared in Figures 5.1 to 5.4. The contributions have been normalized, so that all contri-

| Abbreviation | Model resolution                 | Country border resolution        | Data set for country border |
|--------------|----------------------------------|----------------------------------|-----------------------------|
| 0101         | $0.1^{\circ} \times 0.1^{\circ}$ | $0.1^{\circ} \times 0.1^{\circ}$ | New                         |
| 0302         | $0.3^{\circ} \times 0.2^{\circ}$ | $0.3^{\circ} \times 0.2^{\circ}$ | New                         |
| 0302_0101    | $0.1^{\circ} \times 0.1^{\circ}$ | $0.3^{\circ} \times 0.2^{\circ}$ | New                         |
| 0403         | $0.4^{\circ} \times 0.3^{\circ}$ | $0.4^{\circ} \times 0.3^{\circ}$ | New                         |
| 50km_0101    | $0.1^{\circ} \times 0.1^{\circ}$ | $50	imes 50~{ m km^2}$           | Old                         |

Table 5.1: Overview of the different data sets analyzed and their corresponding abbreviations.

butions are shown as relative to the total sum of contributions (except for ozone, where the absolute contribution is shown). The contribution to the country itself is presented, together with the contributions to the top 5 receptors (summed up for the 5 receptors that receive the highest contributions from that country, except the country itself. Note: it is the largest contribution in absolute numbers that is used; for ozone the contributions can be negative). In addition, the sum of the contributions to all other defined regions in the EMEP area is shown (that is: the rest of the countries plus the sea areas).

For the country-to-itself, the overall differences compared to the 0101 data set are small (see Table 5.2).

The difference only due to different resolution of the country borders of the receptor areas (Table 5.2, column 0302\_0101) are in the order of 1-3%. However, differences to the results where the old country border data set is used (Table 5.2, column 50km\_0101) are larger; up to 10%.

Comparing directly the 0302 and 0101 data sets using the same set of country border data, the difference is up to 11% (Table 5.2, column 0302). As expected, the difference between the 0403 and 0101 (Table 5.2, column 0403) is larger than the difference between 0302 and 0101. Overall, the smallest differences are found for depositions (only a few percent), while the differences for PM and ozone is somewhat larger.

The maximum differences between the different runs (for the 5 largest country-to-country contributions for each of the 5 countries) are also calculated (not shown). The maximum differences for the individual contributions to other countries are somewhat larger than for the country-to-itself contributions, and the largest differences are found for PM. Especially the Italy to Switzerland contribution differ between the different resolutions, up to almost

|                   | 0302       | 0403       | 0302_0101 | 50km_0101 |
|-------------------|------------|------------|-----------|-----------|
| S deposition      | 1.7 (IT)   | 3.0 (IT)   | 1.5 (IT)  | 8.7 (NO)  |
| ox. N deposition  | -3.1 (BG)  | -2.9 (NL)  | 1.1 (IT)  | -3.2 (NO) |
| red. N deposition | -1.6 (PL)  | -1.5 (PL)  | 2.7 (NL)  | 8.2 (NL)  |
| $PM_{10}$         | -6.7 (IT)  | -9.2 (NO)  | 1.8 (NL)  | 7.1 (NL)  |
| $PM_{2.5}$        | -6.7 (IT)  | -9.9 (NO)  | 1.7 (NL)  | 6.4 (NL)  |
| MAXO3_NOx         | -10.9 (NL) | -10.6 (NL) | 2.9 (NL)  | 9.7 (NL)  |
| MAXO3_NMVOC       | 8.0 (BG)   | 10.2 (BG)  | 0.38 (NL) | 2.7 (NO)  |

Table 5.2: Maximum difference (in percent) of the country-to-itself contribution due to different resolutions and country border data sets (see table 5.1). The 0101 model run is the reference. The country for which this maximum occurs is given in parenthesis.



Figure 5.1: Relative contributions (based on 15% reductions) from one country to the country itself (self), to the 5 other countries receiving most of the pollution (top5) and to the rest of the countries/regions (others). Left column: oxidised sulphur deposition, right column: oxidised nitrogen deposition. The different colours define different resolutions, see table 5.1 for explanations.

30% for PM<sub>2.5</sub>. This can probably be explained by the transport across the mountains towards Switzerland - which might be sensitive to the topography (which by definition would be better resolved in the finer resolution runs). However, this contribution is very small. Overall, the differences due to using a new country border data set is as large as the difference between 0302 and 0101, but the differences are not systematical (i.e. lower or higher). As expected, the 0302 model calculations are in closer agreement to 0101 than the 0403 model runs.

Based on these test calculations, we decided to run SRMs for 2016 in  $0.3^{\circ} \times 0.2^{\circ}$  resolution, as the results were slightly closer to  $0.1^{\circ} \times 0.1^{\circ}$  results than those from the  $0.4^{\circ} \times 0.3^{\circ}$  resolution runs. The new country border data set is applied, as it is more accurate than the old  $50 \times 50 \text{km}^2$  data set and also consistent with what is applied for emissions by CEIP.



Figure 5.2: Relative contributions for reduced nitrogen deposition (based on 15% reductions) from one country to the country itself (self), to the 5 other countries receiving most of the pollution (top5) and to the rest of the countries/regions (others). The different colours define different resolutions, see table 5.1 for explanations.

## References

- EMEP Status Report 1/2017: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP MSC-W & CCC & CEIP, Norwegian Meteorological Institute (EMEP/MSC-W), Oslo, Norway, 2017.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Physics, 12, 7825–7865, doi:10.5194/acp-12-7825-2012, 2012.
- Simpson, D., Bergström, R., Imhof, H., and Wind, P.: Updates to the EMEP MSC-W model, 2016-2017, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2017, The Norwegian Meteorological Institute, Oslo, Norway, 2017.



Figure 5.3: Relative contributions (based on 15% reductions) from one country to the country itself (self), to the 5 other countries receiving most of the pollution (top5) and to the rest of the countries/regions (others). Left column:  $PM_{2.5}$ , right column:  $PM_{10}$ . The different colours define different resolutions, see table 5.1 for explanations.



Figure 5.4: Contributions (ppb per 15% reductions) from one country to the country itself (self), to the 5 other countries receiving most of the pollution (top5) and to the rest of the countries/regions (others). Left column: Yearly average of daily maximum ozone from NO<sub>x</sub> emission reductions, right column: Yearly average of daily maximum ozone from NMVOC emission reductions. The different colours define different resolutions, see table 5.1 for explanations.

## CHAPTER 6

## Effects of international shipping

### Jan Eiof Jonson, Michael Gauss, Michael Schulz and Ágnes Nyíri

## 6.1 Background

The effects of international shipping on air pollution levels have been a subject in recent EMEP reports and papers, see Gauss and Jonson (2016), Gauss et al. (2017), Jonson et al. (2015, 2018). In Jonson et al. (2018) it was shown that the calculated contributions from European emissions to the ozone indicators SOMO35 and POD1 forest were considerably higher than to annual mean ozone. On the other hand the calculated contributions from international shipping were similar for annual ozone and the ozone indicators. We suspected that this has to do with the location of ship emissions relative to the European continent, and that this result would vary, depending on the location of the emissions relative to the European continent. In order to test this assumption, separate source receptor relationships (SR) from global as well as from individual sea areas to European countries are calculated in this study. In addition to ozone and ozone indicators, SR relationships are calculated for PM<sub>2.5</sub> and depositions of nitrogen and sulphur. These results are compared to SR relationships calculated by the regional EMEP MSC-W model and reported in EMEP Status Report 1/2016 (2016), run with 2014 emissions/meteorology, and in Appendix C of this year's report, run with 2016 emissions/meteorology. Global model calculations enable us to calculate the percentage contribution of shipping to anthropogenic, and thus controllable, European pollution levels. It should be noted that these percentage contributions would be smaller if they were calculated with respect to *total* air pollution which is caused by both anthropogenic and natural (i.e. inherently uncontrollable) sources.

## 6.2 Emissions from shipping

Obtaining reliable data on emissions from international shipping has long been a challenge, but in recent years AIS (Automatic Identification System) positioning data have become available, continuously tracking the position of the vessels. This has resulted in substantial improvements in the reliability of the estimated ship emissions.

A number of IMO (International Maritime Organisation) and EU regulations have been implemented in recent years, or will be implemented in the near future, affecting ship emissions globally, and in European waters in particular. The most noteworthy change in the recent past is the SECA (Sulphur Emission Control Areas) regulation, limiting the sulphur content in marine fuels to 0.1% since 2015. Fuels with higher sulphur content may be used in combination with emission reduction technology reducing sulphur emission to levels corresponding to the use of low sulphur fuels. In European waters the North Sea and the Baltic Sea are designated as SECAs. These two sea areas are also designated as NECAs (NO<sub>x</sub> Emission Control Areas) from 2021. Only gradual reductions of NO<sub>x</sub> emissions are expected as the NECA regulation only applies to new ships or major modifications of existing ships. Furthermore, from 2020 a global cap on sulphur content in marine fuels of 0.5% will be implemented.

By courtesy of the Finnish Meteorological Institute (FMI) we have been granted access to a global ship emission data set for 2015 (Johansson et al. 2017). The implementation of these emissions in the EMEP MSC-W model was discussed in Gauss et al. (2017), comparing these emissions with previous estimates used in the EMEP MSC-W model. The same 2015 emissions are used here.

In Table 6.1 the FMI global emissions are listed for the Baltic Sea, the North Sea, the Mediterranean Sea and the Black Sea. In addition to the emissions listed in Gauss et al. (2017) the emissions from remaining sea areas outside Europe but within the EMEP domain ('Remaining Atl.'), as well as global emissions are listed. 'Remaining Atl.' corresponds to the ATL (Remaining N-E Atlantic Ocean) used in the regional SR calculations in the EMEP status report.

In the FMI 2015 emission data all PM emissions are assumed to be  $PM_{2.5}$  (SO<sub>4</sub> is also emitted as particles). Emissions of ash are assumed to have a high content of metals with a weighted average molecular weight of 42.4, see Moldanová et al. (2009), thus making a non-negligible contribution to PM emissions by mass.

Table 6.1: Ship emissions from FMI in European sub Sea areas. Sulphur emissions are given as  $SO_2$  and  $SO_4$ . PM emissions are sub-divided into Ash, EC and OC, all assumed emitted as  $PM_{2.5}$ .

|                | Sulphur            |        | NOx       | CO    | PM     |             |      |
|----------------|--------------------|--------|-----------|-------|--------|-------------|------|
|                | Gg SO <sub>2</sub> |        | $Gg NO_2$ | Gg CO | see ca | see caption |      |
|                | SO <sub>2</sub>    | $SO_4$ |           |       | Ash    | EC          | OC   |
| Global         | 9349               | 560    | 19571     | 1398  | 91     | 124         | 313  |
| Remaining Atl. | 478                | 28     | 996       | 73    | 4.7    | 6.5         | 16   |
| Baltic Sea     | 10.3               | 0.8    | 321       | 22    | 1.5    | 2.0         | 5.0  |
| North Sea      | 23.8               | 1.5    | 695       | 51    | 3.4    | 4.7         | 11.9 |
| Mediterr. Sea  | 675                | 40     | 1353      | 94    | 6.4    | 8.8         | 22   |
| Black Sea      | 68                 | 3.9    | 172       | 13    | 0.9    | 1.2         | 3.0  |

### 6.3 Model results

The calculations have been made with the global EMEP rv4.14 version on a  $0.5 \times 0.5$  degrees resolution for 2015. Land based 2015 emissions are from ECLIPSE version 5a. Traditionally the SR relationships calculated with the regional EMEP MSC-W model have been calculated reducing the emissions from the source regions (countries) separately for different species, or combination of species. Here we have taken a simpler approach reducing emissions in the sea areas by 15% for all species at the same time. We have also combined the North Sea and the Baltic Sea (both SECA areas) into one source area. Similarly, we have combined the Mediterranean Sea and the Black Sea. As it takes some time for the global model to adjust, the model simulations are preceded by a 5-month spin-up. The global model runs in this study are:

- Base: Model run with all emissions. Spin-up as Base.
- SR All: Model run with all anthropogenic emissions reduced by 15%. Spin-up as SR All.
- SR AllSh: Model run with all ship emissions reduced by 15%. Spin-up as SR AllSh.
- SR BALNOS: Model run with all ship emissions in the North Sea and the Baltic Sea reduced by 15%. Spin-up as Base.
- SR MEDBLS: Model run with all ship emissions in the Mediterranean Sea and the Black Sea reduced by 15%. Spin-up as Base.
- SR ATL: Model run with all ship emissions in the N-E Atlantic reduced by 15%. Spinup as Base.

The motivation for the SR All model run is to relate the effects of ship emissions to the total global anthropogenic contributions to air pollution. The effects of global shipping and the effects of the individual sea areas are calculated subtracting the SR runs from the Base model run. For sea areas close to Europe the time lag for emission changes in these sea areas to affect European receptors is short, justifying the use of the spin-up from the Base run here. This is the same assumption also used in the regional source receptor calculations in Appendix C, where all model runs start from the same initial conditions.

Here we calculate the percentage contributions from shipping globally and in different sea areas relative to the global antropogenic contribution by letting Base - SR All represent 100% of the anthropogenic contribution. Thus the anthropogenic percentage contributions from shipping can be calculated as:

$$\frac{Base - SR\,x}{Base - SR\,All} \times 100$$

where SR x can be SR BALNOS, SR MEDBLS, SR ATL or SR AllSh. Below we also compare the source receptor relationships from shipping to selected countries calculated by the global model to previous (EMEP Status Report 1/2016 2016) and this year's (see Appendix C) regional model calculations. Differences in source receptor relationships can be caused by several factors such as interannual meteorological variability, model resolution and emissions. In particular ship emissions for 2014 differ substantially from 2015/2016 as documented in Gauss et al. (2017).

The effects of emissions from shipping on PM<sub>2.5</sub> from all ships (SR AllSh) and from the sea areas outside Europe (SR BALNOS, SR MEDBLS, SR ATL) on Europe are shown in Figure 6.1, supplemented by Figure 6.2a showing the percentage contributions from shipping in different sea areas to European countries relative to the global antropogenic contribution. The full length of the black bars in Figure 6.2a represents the total percentage contributions from shipping. The difference in the total length of the black bar and the stacked bars from other sea areas is a combination of ROW (Rest Of the World) shipping and non-linearities in the calculations. The largest effects from shipping are calculated for countries/regions bordering the Mediterranean Sea and the North Sea. The countries bordering the Mediterranean Sea have virtually no contributions from shipping outside the Mediterranean, whereas countries bordering other sea areas may have sizeable contributions (in percentage terms) also from more distant sea areas, as exemplified by the contributions from SR ATL to the Netherlands and Belgium. In Table 6.2 the contributions from ship emissions to  $PM_{2.5}$  in European countries based on the global 2015 calculations (GL15) are compared to source receptor relationships for 2014 (EMEP Status Report 1/2016 2016) and for 2016 (extracted from Appendix C). The relative decreases in contributions from shipping to countries bordering the North Sea and the Baltic Sea between 2014 and GL15/2016 are much smaller than the decrease in sulphur emissions following the implementation of SECA, reflecting that PM<sub>2.5</sub> is also formed from NO<sub>x</sub> as well as being emitted directly. For most countries the effects of ships is larger in the GL15 compared to the 2016 calculation. Source receptor relationships for different meteorological years will differ even if emissions are unchanged. Even so, parts of these differences may be caused by the coarse resolution in the global calculation.

The effects on European ozone levels of emissions from shipping from SR AllSh and from the sea areas outside Europe are shown in Figure 6.3. The largest effects are calculated for the North Sea region with ozone reductions, but also in and around the Mediterranean Sea where ship emissions result in an increase in ozone. In the North Sea region there are large emissions from land based sources as well, so that additional emissions from ships result in local ozone loss by NO<sub>x</sub> titration. In and around the Mediterranean Sea high NO<sub>x</sub> emissions occur in an environment with more sunlight and a NO<sub>x</sub> to VOC ratio favourable for ozone production. This is also illustrated in Figures 6.2b (SOMO35) and 6.4a,b (annual average  $O_3$  and POD<sub>1</sub> forest respectively) showing the percentage contributions from shipping in the sea areas relative to the global antropogenic contribution (SOMO35 and POD<sub>1</sub> forest are defined in section 1.2). As for  $PM_{2.5}$  we let Base - SR All represent 100% of the anthropogenic contribution, but given the strong non-linear ozone chemistry, percentage contributions from individual sea areas are not added up, but displayed as separate bars. For several countries bordering the North Sea and the Baltic Sea (NO<sub>x</sub>) emissions result in negative contributions to SOMO35. For Belgium and the Netherlands the resulting SR AllSh effects of ship emissions on ozone are negative for annually averaged ozone and for the two ozone indicators SOMO35 and POD<sub>1</sub> forest. In particular for countries bordering the Mediterranean countries ship emissions result in higher ozone levels. Ship emissions from distant sources relative to the European mainland as ATL (as well as ROW) result in higher ozone for all countries. This is also shown in the source receptor relationships listed in Table 6.3.

The percentage of the anthropogenic depositions of total sulphur and nitrogen originating from ship emissions are shown in Figure 6.5a,b. In particular for countries bordering the Mediterranean Sea a large percentage of the anthropogenic depositions are caused by ship emissions. Furthermore the calculated depositions here are almost entirely attributed to Mediterranean and Black Sea emissions. Also for countries bordering the North Sea and the Table 6.2: Source receptor relationships for  $PM_{2.5}$  from shipping (all emitted species) as calculated by the global model and as reported for year 2014. **Glob** is the contribution from all global shipping, **NOS + BAS** from the North Sea and Baltic Sea combined, **MED + BLS** the Mediterranean Sea and Black Sea combined and **ATL** is the North Atlantic. GL15 is from the global model calculations, 2014 is from EMEP Status Report 1/2016 (2016) and 2016 from Appendix C in this report. Only countries where shipping exceeds 5% of the antropogenic contribution are included here. Units: ng/m<sup>3</sup> per 15% emission reduction.

|         | Glob                                   | b NOS + BAS |        |          | ME        | <b>D</b> + <b>B</b> | LS      | ATL   |      |      |
|---------|----------------------------------------|-------------|--------|----------|-----------|---------------------|---------|-------|------|------|
| Country | GL15                                   | GL15        | 2014   | 2016     | GL15      | 2014                | 2016    | GL15  | 2014 | 2016 |
|         | Countries bordering the Baltic Sea     |             |        |          |           |                     |         |       |      |      |
| EE      | 29                                     | 25          | 31     | 24       | 1         | 0                   | 0       | 2     | 2    | 1    |
| FI      | 10                                     | 8           | 13     | 8        | 0         | 0                   | 0       | 2     | 2    | 2    |
| DK      | 124                                    | 110         | 179    | 127      | 1         | 1                   | 0       | 9     | 11   | 6    |
| SE      | 19                                     | 15          | 27     | 17       | 0         | 0                   | 0       | 3     | 3    | 3    |
|         |                                        |             | Co     | ountries | borderir  | ng the N            | orth Se | a     |      |      |
| BE      | 181                                    | 120         | 115    | 87       | 7         | 6                   | 3       | 25    | 27   | 15   |
| DE      | 108                                    | 76          | 68     | 52       | 4         | 5                   | 2       | 10    | 10   | 5    |
| LU      | 103                                    | 54          | 52     | 36       | 7         | 1                   | 3       | 15    | 17   | 9    |
| NL      | 255                                    | 198         | 193    | 155      | 6         | 5                   | 2       | 23    | 27   | 16   |
| NO      | 9                                      | 3           | 10     | 7        | 0         | 0                   | 0       | 5     | 5    | 4    |
| GB      | 75                                     | 37          | 56     | 48       | 1         | 1                   | 1       | 34    | 43   | 27   |
|         | '                                      |             | Countr | ies boro | lering th | e Medit             | erranea | n Sea |      |      |
| CY      | 197                                    | 1           | 0      | 0        | 194       | 209                 | 112     | 1     | 1    | 0    |
| ES      | 105                                    | 3           | 3      | 2        | 71        | 59                  | 47      | 31    | 29   | 22   |
| IT      | 145                                    | 3           | 1      | 1        | 136       | 123                 | 88      | 3     | 3    | 2    |
| FR      | 93                                     | 35          | 41     | 33       | 23        | 22                  | 13      | 27    | 29   | 17   |
| GR      | 116                                    | 1           | 0      | 0        | 113       | 122                 | 74      | 1     | 1    | 1    |
| MT      | 383                                    | 1           | 2      | 1        | 376       | 393                 | 323     | 4     | 3    | 3    |
|         | Countries bordering the North Atlantic |             |        |          |           |                     |         |       |      |      |
| IE      | 62                                     | 23          | 17     | 21       | 1         | 0                   | 0       | 36    | 54   | 32   |
| IS      | 4                                      | 3           | 0      | 1        | 0         | 0                   | 0       | 4     | 6    | 3    |
| PT      | 112                                    | 1           | 2      | 1        | 22        | 10                  | 14      | 87    | 93   | 57   |





e) From ATL to Europe

Figure 6.1: Percentage reduction in  $PM_{2.5}$  that would result from a 15% reduction in the emissions of all emitted species from global shipping (a,b), and from the North Sea and the Baltic Sea (c) from the Mediterranean Sea and the Black Sea (d) and from the North Atlantic (e)



Figure 6.2: Percentage contributions from shipping to  $PM_{2.5}$  (left) and to SOMO35 relative to all global antropogenic emissions. For  $PM_{2.5}$  the total length of the bars is the contribution from all shipping assuming linearity. For SOMO35 the contributions from all ships and from the individual sea areas are shown as separate bars. Contries with less than 5% contributions from shipping are not shown.





e) From ATL to Europe

Figure 6.3: Percentage reduction in SOMO35 that would result from a 15% reduction in the emissions of all emitted species from global shipping (a,b), and from the North Sea and the Baltic Sea (c) from the Mediterranean Sea and the Black Sea (d) and from the North Atlantic (e)



Figure 6.4: Percentage contributions from shipping to annually averaged  $O_3$  (left) and POD<sub>1</sub> forest (right) relative to all global antropogenic emissions. The contributions are shown for all ships and for ships in different sea areas. The percentage contributions of annual average ozone to the Netherlands are -101% from the North Sea and Baltic Sea combined and from all ships -80%. For Belgium the percentage from the North Sea and Baltic Sea is -32% and from all ships 21%. Contribution to POD<sub>1</sub> forest in the Netherlands from the North Sea and Baltic Sea combined is 27%.

Table 6.3: Source receptor relationships for SOMO35 from shipping (all emitted species) as calculated by the global model and as reported for year 2014 and for 2016. **Glob** is the contribution from all global shipping, **NOS + BAS** from the North Sea and Baltic Sea combined, **MED + BLS** the Mediterranean Sea and Black Sea combined and **ATL** is the North Atlantic. GL15 is from the global model calculations, 2014 is from EMEP Status Report 1/2016 (2016) and 2016 from Appendix C in this report. Only countries where shipping exceeds 5% of the antropogenic contribution are included here. Units: ppb.days per 15% emission reductions.

|         | Glob                                   | Glob NOS + BAS |        |           | ME        | E <b>D</b> + B | LS       | ATL   |      |      |
|---------|----------------------------------------|----------------|--------|-----------|-----------|----------------|----------|-------|------|------|
| Country | GL15                                   | GL15           | 2014   | 2016      | GL15      | 2014           | 2016     | GL15  | 2014 | 2016 |
|         | Countries bordering the Baltic Sea     |                |        |           |           |                |          |       |      |      |
| EE      | 50                                     | 30             | 4      | 22        | 4         | 0              | 1        | 11    | 3    | 4    |
| FI      | 34                                     | 16             | 3      | 12        | 4         | 0              | 0        | 10    | 3    | 4    |
| DK      | 27                                     | 0              | -13    | 7         | 5         | 0              | 0        | 15    | 9    | 6    |
| LV      | 47                                     | 28             | 5      | 19        | 5         | 0              | 1        | 10    | 3    | 4    |
| SE      | 42                                     | 18             | 2      | 12        | 5         | 0              | 0        | 13    | 5    | 6    |
| PL      | 33                                     | 14             | 3      | 10        | 5         | 2              | 1        | 9     | 4    | 4    |
|         |                                        |                | Co     | ountries  | borderi   | ng the N       | lorth Se | a     |      |      |
| BE      | -3                                     | -21            | -14    | -11       | 4         | 2              | 1        | 15    | 10   | 7    |
| DE      | 25                                     | 2              | -2     | 1         | 5         | 2              | 1        | 12    | 7    | 6    |
| LU      | 25                                     | 0              | -2     | -1        | 5         | 2              | 2        | 13    | 9    | 6    |
| NL      | -27                                    | -50            | -27    | -20       | 4         | 1              | 1        | 15    | 8    | 7    |
| NO      | 38                                     | 12             | 2      | 8         | 7         | 0              | 0        | 15    | 5    | 7    |
| GB      | 36                                     | 0              | -9     | 0         | 6         | 1              | 0        | 20    | 13   | 8    |
|         |                                        |                | Countr | ries boro | lering th | e Medit        | erranea  | n Sea |      |      |
| AL      | 59                                     | 6              | 1      | 1         | 40        | 47             | 38       | 7     | 3    | 3    |
| CY      | 143                                    | 4              | 0      | 1         | 130       | 97             | 78       | 5     | 2    | 1    |
| ES      | 56                                     | 5              | 0      | 1         | 18        | 10             | 13       | 23    | 15   | 18   |
| IT      | 64                                     | 5              | 1      | 2         | 45        | 34             | 39       | 8     | 5    | 5    |
| FR      | 43                                     | 4              | -1     | 3         | 12        | 7              | 7        | 18    | 14   | 11   |
| GR      | 82                                     | 6              | 1      | 2         | 65        | 54             | 47       | 6     | 3    | 2    |
| MT      | 125                                    | 5              | 1      | 2         | 105       | 65             | 37       | 9     | 7    | 6    |
| TR      | 47                                     | 5              | 0      | 1         | 28        | 25             | 25       | 6     | 2    | 1    |
|         |                                        |                | Co     | ountries  | borderii  | ng the B       | lack Se  | a     |      |      |
| BG      | 41                                     | 7              | 2      | 2         | 21        | 19             | 17       | 6     | 2    | 2    |
| RO      | 31                                     | 8              | 2      | 2         | 12        | 10             | 8        | 6     | 2    | 2    |
|         | Countries bordering the North Atlantic |                |        |           |           |                |          |       |      |      |
| IE      | 45                                     | 7              | 0      | 2         | 7         | 0              | 0        | 20    | 16   | 8    |
| IS      | 39                                     | 10             | 1      | 2         | 8         | 0              | 0        | 15    | 10   | 6    |
| PT      | 70                                     | 5              | 0      | 1         | 8         | 2              | 5        | 45    | 29   | 34   |


Figure 6.5: Percentage contributions from shipping to annual depositions of sulphur (left) and total nitrogen (right) relative to all global antropogenic emissions. The contributions are shown for all ships and for ships in different sea areas.

Table 6.4: Source receptor relationships for depositions of oxidised nitrogen from shipping (all emitted species) as calculated by the global model and as reported for year 2014 and for 2016. **Glob** is the contribution from all global shipping, **NOS + BAS** from the North Sea and Baltic Sea combined, **MED + BLS** the Mediterranean Sea and Black Sea combined and **ATL** is the North Atlantic. GL15 is from the global model calculations, 2014 is from EMEP Status Report 1/2016 (2016) and 2016 from Appendix C in this report. Only countries where shipping exceeds 5% of the antropogenic contribution are included here. Units: 100 Mg of S per 15% emission reductions.

|         | Glob                               | NOS + BAS                              |      | MED + BLS |      |      | ATL  |       |      |      |  |
|---------|------------------------------------|----------------------------------------|------|-----------|------|------|------|-------|------|------|--|
| Country | GL15                               | GL15                                   | 2014 | 2016      | GL15 | 2014 | 2016 | GL15  | 2014 | 2016 |  |
|         | Countries bordering the Baltic Sea |                                        |      |           |      |      |      |       |      |      |  |
| EE      | 35                                 | 32                                     | 19   | 22        | 0    | 0    | 0    | 1     | 1    | 1    |  |
| FI      | 122                                | 110                                    | 81   | 73        | 0    | 1    | 1    | 9     | 5    | 5    |  |
| DK      | 72                                 | 65                                     | 50   | 42        | 1    | 1    | 0    | 4     | 3    | 2    |  |
| SE      | 226                                | 202                                    | 197  | 141       | 0    | 2    | 1    | 17    | 10   | 9    |  |
|         | Countries bordering the North Sea  |                                        |      |           |      |      |      |       |      |      |  |
| BE      | 43                                 | 29                                     | 21   | 24        | 1    | 6    | 0    | 5     | 4    | 3    |  |
| DE      | 316                                | 231                                    | 154  | 153       | 10   | 11   | 5    | 26    | 18   | 14   |  |
| LU      | 2                                  | 1                                      | 1    | 1         | 0    | 0    | 0    | 0     | 0    | 0    |  |
| NL      | 81                                 | 66                                     | 35   | 46        | 0    | 1    | 0    | 6     | 5    | 4    |  |
| NO      | 134                                | 98                                     | 98   | 87        | 0    | 1    | 0    | 31    | 15   | 19   |  |
| GB      | 185                                | 107                                    | 115  | 90        | 0    | 3    | 2    | 66    | 55   | 45   |  |
|         | Countries bordering the Mediterran |                                        |      |           |      |      |      | n Sea |      |      |  |
| AL      | 11                                 | 0                                      | 0    | 0         | 10   | 22   | 13   | 0     | 0    | 0    |  |
| CY      | 6                                  | 0                                      | 0    | 0         | 6    | 4    | 3    | 0     | 1    | 0    |  |
| ES      | 252                                | 9                                      | 8    | 5         | 157  | 119  | 105  | 80    | 65   | 68   |  |
| IT      | 203                                | 6                                      | 4    | 4         | 186  | 212  | 173  | 6     | 4    | 5    |  |
| FR      | 310                                | 125                                    | 109  | 115       | 74   | 107  | 70   | 85    | 81   | 65   |  |
| GR      | 91                                 | 2                                      | 0    | 1         | 87   | 92   | 69   | 2     | 1    | 1    |  |
| MT      | 1                                  | 0                                      | 0    | 0         | 0    | 1    | 0    | 0     | 0    | 0    |  |
|         |                                    | Countries bordering the North Atlantic |      |           |      |      |      |       |      |      |  |
| IE      | 25                                 | 7                                      | 11   | 9         | 1    | 0    | 0    | 15    | 16   | 11   |  |
| IS      | 7                                  | 2                                      | 7    | 2         | 0    | 0    | 0    | 4     | 5    | 4    |  |
| PT      | 55                                 | 1                                      | 1    | 0         | 11   | 4    | 6    | 42    | 41   | 34   |  |

\_

Table 6.5: Source receptor relationships for depositions of oxidised sulphur from shipping (all emitted species) as calculated by the global model and as reported for year 2014 and for 2016. **Glob** is the contribution from all global shipping, **NOS + BAS** from the North Sea and Baltic Sea combined, **MED + BLS** the Mediterranean Sea and Black Sea combined and **ATL** is the North Atlantic. GL15 is from the global model calculations, 2014 is from EMEP Status Report 1/2016 (2016) and 2016 from Appendix C in this report. Only countries where shipping exceeds 5% of the antropogenic contribution are included here. Units: 100Mg of N per 15% emission reductions.

|         | Glob                               | NC   | )S + B | AS       | ME        | <b>D</b> + <b>B</b> | LS       |        | ATL  |      |  |
|---------|------------------------------------|------|--------|----------|-----------|---------------------|----------|--------|------|------|--|
| Country | GL15                               | Glob | 2014   | 2016     | GL15      | 2014                | 2016     | GL15   | 2014 | 2016 |  |
|         | Countries bordering the Baltic Sea |      |        |          |           |                     |          |        |      |      |  |
| EE      | 2                                  | 1    | 7      | 1        | 0         | 0                   | 0        | 1      | 0    | 0    |  |
| FI      | 9                                  | 5    | 23     | 3        | 1         | 1                   | 0        | 3      | 2    | 2    |  |
| DK      | 7                                  | 4    | 29     | 2        | 0         | 1                   | 0        | 2      | 2    | 1    |  |
| SE      | 19                                 | 9    | 64     | 5        | 1         | 1                   | 0        | 7      | 5    | 4    |  |
|         | Countries bordering the North Sea  |      |        |          |           |                     |          |        |      |      |  |
| BE      | 7                                  | 2    | 11     | 3        | 2         | 1                   | 0        | 2      | 2    | 1    |  |
| DE      | 59                                 | 19   | 64     | 7        | 6         | 8                   | 3        | 13     | 9    | 6    |  |
| LU      | 0                                  | 0    | 0      | 0        | 0         | 0                   | 0        | 0      | 0    | 0    |  |
| NL      | 16                                 | 11   | 33     | 4        | 1         | 1                   | 0        | 3      | 2    | 2    |  |
| NO      | 30                                 | 6    | 36     | 6        | 1         | 1                   | 0        | 23     | 13   | 13   |  |
| GB      | 55                                 | 4    | 50     | 5        | 2         | 3                   | 1        | 48     | 56   | 28   |  |
|         |                                    |      | Count  | ries bor | dering th | ne Medi             | terranea | in Sea |      |      |  |
| AL      | 8                                  | 0    | 0      | 0        | 8         | 21                  | 9        | 0      | 0    | 0    |  |
| CY      | 3                                  | 0    | 0      | 0        | 3         | 4                   | 1        | 0      | 0    | 0    |  |
| ES      | 164                                | 1    | 2      | 0        | 105       | 97                  | 62       | 57     | 61   | 41   |  |
| IT      | 134                                | 1    | 1      | 0        | 127       | 202                 | 101      | 5      | 3    | 3    |  |
| FR      | 123                                | 7    | 38     | 7        | 54        | 100                 | 41       | 55     | 66   | 37   |  |
| GR      | 64                                 | 0    | 0      | 0        | 62        | 79                  | 43       | 1      | 0    | 0    |  |
| MT      | 1                                  | 0    | 0      | 0        | 1         | 2                   | 0        | 0      | 0    | 0    |  |
|         |                                    |      | Cou    | ntries b | ordering  | the No              | rth Atla | ntic   |      |      |  |
| IE      | 13                                 | 0    | 3      | 1        | 0         | 0                   | 0        | 12     | 21   | 8    |  |
| IS      | 4                                  | 0    | 1      | 0        | 0         | 0                   | 0        | 3      | 5    | 2    |  |
| PT      | 32                                 | 0    | 0      | 0        | 7         | 2                   | 3        | 23     | 40   | 20   |  |

Baltic Sea there are large percentage contributions from shipping for nitrogen depositions, whereas contributions to sulphur depositions are much smaller. This can be attributed to the introduction of the stricter SECA regulations in the North Sea and the Baltic Sea in 2015. The effects of SECA is further illustrated comparing source receptor relationships for 2014, GL15 and 2016 in Table 6.5. For the depositions of nitrogen contributions from shipping are also large for countries bordering the North Sea and the Baltic Sea. as shown in Table 6.4 the calculated source receptor relationships are comparable for 2014, GL15 and 2016.

#### 6.4 Discussions and conclusions

As shown here, the calculated anthropogenic contributions from shipping to air pollution and depositions in Europe are substantial. The contributions calculated with a global version of the EMEP MSC-W model appear larger than in the regional model calculations. This may in part be explained by the different meteorological conditions in different years, but also by the coarser resolution used in the global model calculations. Nevertheless, following the implementation of SECA in the North Sea and in the Baltic Sea, both the regional 2016 and the global GL15 calculations show large reductions in sulphur depositions in countries bordering these two sea areas. Reductions of  $PM_{2.5}$  in the same countries are much smaller as  $PM_{2.5}$  from non-sulphur primary particles and from  $NO_x$  are not directly affected by the SECA regulations.

Both SOMO35 and POD<sub>1</sub> forest are defined as exceedances above a certain threshold. Ozone levels/fluxes often fluctuate around the threshold values. As a result, changes in ozone levels will have larger impacts on the ozone indicators than on the average concentration. This applies both to shipping and land-based emissions.

Furthermore, in the high emissions region in around the North Sea and the Baltic Sea ozone titration events enhanced by ship emissions are frequent, but they occur more often in the winter months when ozone levels are low (and often lower than the 35 ppb threshold for SOMO35) and outside the growing season (thus without effect on POD<sub>1</sub> forest). The effects on ozone indicators are thus relatively low in winter, but much higher in the summer months when chemical activity is high and also the background ozone concentrations are high. The indicators will thus be more sensitive to emission changes than annual average ozone. In Jonson et al. (2018) it was shown that most of the anthropogenic ozone originates from sources outside Europe, but with considerable contributions from European source regions and emissions here affects ozone in the same way as European land-based emissions. This explains the larger effects on the percentage contributions (positive and negative) from these two sea areas compared to annually averaged ozone.

In the Mediterranean Sea and the Black Sea conditions favour net ozone production in most locations and throughout most of the year (more available sunlight and other ozone precursors), and ozone levels below the thresholds are less frequent. Here the percentage contributions from ship emissions to the ozone indicators are only marginally larger than to annually averaged ozone.

As the ozone chemistry is nonlinear, emissions in a clean environment have a higher potential for ozone production than in a polluted environment. Thus ship emissions from distant upwind sources relative to the European mainland, such as ATL (and ROW), result in higher ozone for all countries, often of similar magnitudes as for emissions in the North Sea and the Baltic Sea.

As explained above, the anthropogenic percentage contribution to the ozone indicators are substantially higher than for annually averaged ozone when isolating the contributions from the North Sea and the Baltic Sea. On the other hand for ozone there are also marked contributions from ship emissions in distant sea areas as ATL and ROW with major contributions outside the summer months. Thus, as shown in Jonson et al. (2018), the contributions from all international shipping to Europe as a whole will not be substantially different for annual average ozone and the ozone indicators.

The motivation for the ozone indicators SOMO35 and POD<sub>1</sub> forest is that they are related to health and ecosystem damages. Ozone levels/fluxes below the thresholds are believed to cause less damage to health and Ecosystems. Related to this, the North Sea and Baltic Sea are now designated as NECAs from 2021, expected to (slowly) bring down emissions as older ships are replaced and thus likely to reduce the health and ecosystem relevant ozone indicators in Europe.

The model results documented here are based on calculations performed over the last six months. There are several unresolved issues that we will address in future work. In particular, we will include model runs calculating source receptor relationships for ROW (Rest of world) shipping. This will also enable us to further explore the non-linear nature of the calculations. For a better comparison with regional model calculations we also hope to repeat the calculations with the exact same model version (in global mode) and the same meteorology (2016) used in the source receptor calculations presented in Appendix C.

#### References

- EMEP Status Report 1/2016: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP MSC-W & CCC & CEIP, Norwegian Meteorological Institute (EMEP/MSC-W), Oslo, Norway, 2016.
- Gauss, M. and Jonson, J.: Emissions from international shipping, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2016, pp. 103–109, The Norwegian Meteorological Institute, Oslo, Norway, 2016.
- Gauss, M., Jonson, J., and Nyíri, A.: Emissions from international shipping, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2017, pp. 129–133, The Norwegian Meteorological Institute, Oslo, Norway, 2017.
- Johansson, L., Jalkanen, J.-P., and Kukkonen, J.: Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution, Atmos. Environ., in review, 2017.
- Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and Denier van der Gon, H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea, Atmospheric Chemistry and Physics, 15, 783– 798, doi:10.5194/acp-15-783-2015, URL http://www.atmos-chem-phys.net/ 15/783/2015/, 2015.
- Jonson, J. E., Schulz, M., Emmons, L., Flemming, J., Henze, D., Sudo, K., Tronstad Lund, M., Lin, M., Benedictow, A., Koffi, B., Dentener, F., Keating, T., and Kivi, R.: The effects of intercontinental emission sources on European air pollution levels, Atmospheric Chemistry and Physics Discussions, 2018, 1–26, doi:10.5194/acp-2018-79, URL https://www. atmos-chem-phys-discuss.net/acp-2018-79/, 2018.
- Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., and Focsa, C.: Characterisation of particulate matter and gaseous emissions from a large ship diesel engine, Atmos. Environ., 43, 2632–2641, URL https://doi.org/10.1016/ j.atmosenv.2009.02.008, 2009.

## CHAPTER 7

#### The winter 2018 intensive measurement period. A brief update

Karl Espen Yttri, Stephen Matthew Platt, Wenche Aas, Sverre Solberg, Minna Aurela, Benjamin Bergmans, Fabian Lenartz, Paolo Lazzeri, Krista Luoma, Marco Pandolfi, Sara Pittavino and Ivan Tombolato

#### 7.1 Background

Carbonaceous matter is a major fraction of the ambient aerosol in Europe. It influences the atmospheric radiative balance and contributes to adverse health effects. Consequently, carbonaceous aerosol is a key species measured regularly in monitoring networks, such as EMEP. There are numerous anthropogenic and natural sources of carbonaceous aerosols, and it is important to identify and quantify these sources to develop efficient abatement strategies. Particularly, there is an interest in distinguishing between the contribution from fossil fuel and biomass combustion, which is possible by multi-wavelength determination of the absorption coefficient (Sandradewi et al. 2008), using the aethalometer manufactured by Magee Scientific. Being robust, easy to operate, available at relatively low cost, and widespread across Europe, this instrument holds the potential to be an important tool for source apportionment (SA) of carbonaceous aerosols.

In a study presented in last year's EMEP Status Report (1/2017), we separated equivalent black carbon (EBC) into a fossil fuel (EBC<sub>ff</sub>) fraction and a biomass burning (EBC<sub>bb</sub>) fraction at four EMEP sites, using a slight modification of the Sandradewi approach (Sandradewi et al. 2008), hereafter called the PMF (Positive Matrix Factorization) approach, whereas levoglucosan was used to validate the EBC<sub>bb</sub> signal. Note that, unlike the Sandradewi approach, the PMF approach requires no a priori knowledge of the aerosol Angström exponents (AAE) for EBC<sub>bb</sub> and EBC<sub>ff</sub> (rather, these are derived as an output from PMF). Besides providing a snapshot of EBC<sub>ff</sub> and EBC<sub>bb</sub> for a few sites across Europe, this study was a pilot for the EMEP/ACTRIS/COLOSSAL intensive measurement period (IMP) conducted in Winter

2018, which demonstrated the feasibility of conducting an up-scaled study. Here we present a brief update for the IMP Winter 2018, as well as a selection of results from a few sites that has undergone the PMF approach to derive  $EBC_{\rm ff}$  and  $EBC_{\rm ff}$ . More information on the IMP Winter 2018 is found here:

- The objectives and setup: https://www.nilu.no/projects/ccc/tfmm/Winter% 20intensive%20measurement%20period.pdf
- On aerosol filter sample collection routines for the campaign: https://www.nilu. no/projects/ccc/tfmm/Guidlines\_Filter\_sampling.pdf
- Laboratories offering analysis of OC/EC and levoglucosan: https://www.nilu. no/projects/ccc/tfmm/Labs\_offering\_centralized\_analysis.pdf

#### 7.2 Aim

The IMP Winter 2018 aim to use the PMF approach to separate EBC into  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$ in the European rural background environment, including low concentration areas in Scandinavia and more polluted regions in Central Europe, and in areas likely differing in source composition, preferably also with an influence of coal combustion. Further, it should compare  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$  apportioned by the PMF approach to filter based measurements of the biomass burning tracer levoglucosan for validation purposes, and to elemental carbon (EC) to derive site-specific Mass Absorption Coefficient (MAC) values. A desired outcome of the IMP is a harmonised European-wide data set with carbonaceous aerosol apportioned into  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$ , which also is applicable for model validation. Finally, the IMP should encourage initiation of regular monitoring of  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$ , and reporting of such data to EMEP.

#### 7.3 Participation, partnership and co-benefit

All EMEP/ACTRIS sites performing absorption coefficient measurements with a multi- wavelength aethalometer were invited to participate in the EMEP/ACTRIS/COLOSSAL intensive measurement period. Participation also required off-line analysis of levoglucosan and OC/EC/TC on filter samples from a co-located filter sampler. A successful outcome of the IMP Winter 2018 depends on participants following the above mentioned guidelines. It also relies on the existing infrastructure of EMEP and ACTRIS, such as protocols for sampling and analysis, calibrated instruments and inter laboratory compared analytical methods. In addition, the IMP Winter 2018 greatly benefits from cooperation with the recently established COST action COLOSSAL (Chemical On-Line cOmpoSition and Source Apportionment of fine aerosol).

IMP winter 2018 was presented in various fora before the start up in December 2017, and we experienced a substantial interest in the initiative and requests to participate also outside EMEP/ACTRIS/COLOSSAL associated partners. Thus, urban background sites were included as well, as long as they fulfilled the measurement guidelines of participation. Inclusion of additional site categories adds value to the study in several ways, e.g. twin sites allow the study of incremental changes in pollution at urban locations or investigation of the influence of local sources at rural background sites.



Figure 7.1: Location and category of sites participating in IMP Winter 2018.

Figure 7.1 shows the location of the 57 sites in 24 different countries that participated in the IMP Winter 2018, and their site category. This includes 2 global sites, 28 regional background sites and 27 urban sites, mostly located in background residential areas, but also traffic sites. The northernmost regional/global site is the Zeppelin Observatory at Svalbard (Norway), whereas Ayia Marina (Cyprus) in the Eastern Mediterranean Sea is both the southernand easternmost regional site. Mace Head at the western coast of Ireland is situated furthest to the west. The sites that participated in IMP Winter 2018 cover a wider area than those sites regularly addressing carbonaceous aerosol by OC/EC measurements within EMEP. This extension is particular pronounced to the east, including several sites along a north to south transect from northern parts of Finland to Lebanon, and to the north-west by inclusion of seven sites in the British Isles.

Numerous variables relevant for air-quality and climate issues were measured at most of the sites participating in IMP Winter 2018, which also support our interpretation of the core variables,  $EBC_{\rm ff}$  and  $EBC_{\rm bb}$ . This includes on- and off-line variables monitored as part of long-term obligations within EMEP, but not exclusively; e.g. novel instrumentation such as

the Total Carbon Analyzer (TCA-08) was tested at a selection of sites. Furthermore, additional funding was provided by one of the participants for <sup>14</sup>C-analysis of EC at selected sites, whereas some sites are considering adding <sup>14</sup>C-analysis at their own cost. <sup>14</sup>C-analysis provides a direct apportionment of EC from fossil and modern sources. Assuming that modern EC is from biomass burning, then <sup>14</sup>C-analysis yields a robust validation of the EBC<sub>ff</sub> and EBC<sub>bb</sub> fractions. This is an improvement compared to using levoglucosan tracer, which yields only EBC<sub>bb</sub> concentrations via an a priori levoglucosan/EBC<sub>bb</sub> emission ratio subject to uncertainties from variation with combustion conditions and the type of wood burned, and which might decrease as levoglucosan degrades in the atmosphere (likely a minor effect, particularly for northern sites in winter). A further advantage of <sup>14</sup>C-EC is that it allows assessment of this degradation via in situ measurement of modern EC/levoglucosan ratios. Finally, comparison of modern/fossil EC fractions to source apportioned biomass/fossil absorption coefficients yields source specific MAC values.

#### 7.4 Data submission and quality control

The core variables (EBC, OC/EC and levoglucosan) asked for in IMP winter 2018, were to be reported by 1st June 2018, a deadline most participants failed to meet. As we write, absorption measurements from 20 sites and EC/OC and/or levoglucosan from 9 sites, have been submitted. Most sites have confirmed that they will report before the end of September.

Data are to be reported to EBAS via the EBAS submission tool (https://ebassubmit-tool.nilu.no), using predefined templates with substantial requirements for metadata and data quality control via flagging, thus ensuring all information required for complete data analysis is available to users in a consistent way, and which is also harmonised with other atmospheric data in EBAS. Even for an experienced user and submitter of aethalometer data, the level of sophistication asked for and needed for the analysis is profound, and several rounds of iteration has been necessary for some of the data to obtain the requested quality. In particular, zero readings needed to establish the Limit of Detection have frequently been left out from initial submitted data and, or when included, not flagged properly, as is the case with flagging of data in general.

#### 7.5 Meteorology during IMP Winter 2018

The core sampling time of IMP Winter 2018 was 1 December 2017 - 1 March 2018. For certain sites, typically Scandinavia, northern Europe and European high altitude sites, there was an option to extend sampling to reflect the period when EBC was elevated, as well as to handle low ambient levels, which requires prolonged sampling time to cope with instrumental detection limits and the criteria of 25- 30 filter samples for OC/EC and levoglucosan analysis.

Overall, the winter 2017-2018 was characterised by windy, wet and rather mild conditions most of the time followed by a period at the end with extremely low temperatures associated with eastern air masses. In December 2017, low pressure activity lead to windy conditions with frequent precipitation and west and north-westerly winds over northern and central Europe. Although there were periods of cold Arctic air mass inflow, the mean temperatures were above normal in most of northern Europe, and precipitation was significantly above normal (180-200 % of the normal in some areas). An anticyclone located over southwestern Europe lead to drier and colder conditions in that area.

January 2018 started with strong westerly and north-westerly winds over central Europe, leading to precipitation and low temperatures, and continued with a period of cold winds from the north and northeast. By the middle of the month, the weather returned to the conditions with strong westerly winds and frequent low-pressure passages. Monthly mean temperatures were 2-3 degrees above normal in many areas and the precipitation was higher than normal in most areas. Paris received more than twice the normal precipitation and experienced severe flooding in the river Seine. A location in Switzerland received two meter snowfall during 24 hours.

February continued with westerly winds and precipitation the first part. From the middle of the month, a weak anticyclone was developing in central Europe that was gradually drifting to the northeast and intensifying. By the 24th an extensive high-pressure system was established over north-western Russia sending very cold air masses westwards over most of Europe leading to snowfall in the Mediterranean and freezing temperatures over large areas. This was named "the beast from the east" (or "the Siberian bear" in the Netherlands). The cold outbreak lasted until the 9th or 10th of March when milder air masses was entering from the south and west. Thus, IMP Winter 2018 provides an excellent opportunity to study changes in the relative share of biomass and fossil fuel to EBC under various winter time meteorological situations, in particular as a function of a wide range in the ambient temperature.

#### 7.6 Results – Briefly on the Brenner and Hyytiälä sites

The winter (20 January - 12 March, 2018) EBC level (1.34  $\mu$ g m<sup>-3</sup>) calculated for the Brenner site supports previous findings of high EBC, EC and air pollution levels in general in the Italian Po Valley region (EMEP status Report 1/2017; Yttri et al. (2007)). The Brenner site is located in the alpine region of northern Italy, where biomass burning for domestic heating is common. In fact, biomass burning was the major fraction of EBC, accounting for 55%, whereas 45% was attributed to fossil fuel sources although the sampling station is placed in the close proximity of the highly trafficked A22, which is a major motorway connecting Italy and northern Europe. These figures show a slightly lower fossil fuel fraction than that observed at the Po Valley rural background site Ispra (EMEP status Report 1/2017), where the fossil fuel/biomass burning split was 50/50 in winter. As the IMP was conducted in winter, the biomass-burning signal was likely exclusively attributed to wood burning from residential heating. This is supported by the pronounced mean diurnal variation of EBC<sub>bb</sub> (Figure 7.2A) with peak levels around midnight. After peaking, the concentration declined until the afternoon the next day except for a minor peak in the morning around 08:00. This cycle is identical to that observed at Ispra (EMEP Status Report 1/2017)) and suggests that biomass burning commences in early evening and continues to some extent through the night and early morning.

The pronounced diurnal variability suggests a strong influence from local sources. The  $EBC_{\rm ff}$  diurnal cycle, clearly reveals the influence of the morning rush hours (07:00 - 09:00), whereas the afternoon (17:00 - 23:00) peak is broader. This reflects extensive vehicular traffic throughout the evening, but also wind direction change regularly occurring in this time frame has to be considered. Comparing the two diurnal cycles we find that  $EBC_{\rm bb}$  is clearly higher than  $EBC_{\rm ff}$  during night (18:00 - 06:00), whereas the two fractions equal each other during daytime. On a 24-hour basis,  $EBC_{\rm bb}$  is the major fraction for approximately 80% of the cases.

An AAE<sub>ff</sub> value of 0.98 and an AAE<sub>bb</sub> value of 1.46 were derived from the PMF approach



Figure 7.2: A) Diurnal variation of  $EBC_{bb}$  and  $EBC_{ff}$  determined via the PMF approach at the traffic site Brenner; B) Diurnal variation of  $EBC_{bb}$  and  $EBC_{bb}$  at the regional site Hyytiälä site; C) Scatterplot of  $EBC_{bb}$  versus levoglucosan for the Brenner site; D) Scatterplot of  $EBC_{bb}$  versus levoglucosan for the Hyytiälä site.

for the Brenner site, which reflects the range of AAE values obtained for the sites analyzed so far (Table 7.1). We note that the PMF approach provides  $AAE_{ff} < 1.0$  at three of five sites, and  $AAE_{bb}$  ranging from 1.27 - 1.51, which is in line with the findings from the most recent and updated study discussing AAE values in Europe (Zotter et al. 2017), using <sup>14</sup>C-analysis of EC for validation of the AAE.

Table 7.1: Site specific absorption Angström exponents (AAE) for fossil fuel and biomass burning particles derived from the PMF approach, site specific MAC values and EBC relative share of fossil fuel (FF) and biomass burning (BB).

|                                                                       | Aosta Saint Christophe | Barcelona     | Brenner | Hyytiälä      | Matorova      |
|-----------------------------------------------------------------------|------------------------|---------------|---------|---------------|---------------|
| Site category                                                         | Urban backgr.          | Urban backgr. | Traffic | Rural backgr. | Rural backgr. |
| AAEff                                                                 | 0.96                   | 1.08          | 0.98    | 0.96          | 1.01          |
| AAE <sub>bb</sub>                                                     | 1.40                   | 1.45          | 1.46    | 1.27          | 1.51          |
| MAC <sub>950 nm</sub> <sup>1)</sup> (m <sup>2</sup> g <sup>-1</sup> ) |                        |               | 3.17    | 5.35          |               |
| FF/BB (%)                                                             | 67/33                  | 74/26         | 45/55   | 57/43         | 61/39         |

1) Obtained by orthogonal distance regression

The output of the PMF approach is partly validated by the diurnal variations observed for the EBC<sub>ff</sub> and EBC<sub>bb</sub> factors, however, the quality of the EBC<sub>bb</sub> signal is mainly validated using the biomass burning tracer levoglucosan. Figure 7.2C shows the very high level of agreement based on linear regression ( $r^2 = 0.944$ ) for the PMF EBC<sub>bb</sub> factor time series with the levoglucosan time series, implying that the PMF approach performs very well.

The EBC wintertime (13 December 2017 - 18 Februar 2018) level (0.141  $\mu$ g m<sup>-3</sup>) at the

Finnish rural background site Hyytiälä was one order of magnitude lower than that observed at the previously discussed Brenner site, a traffic site in northern Italy. These two sites represent the lower and the higher ends of the EBC concentration range analysed so far in the IMP Winter 2018, with biomass burning explaining the major fraction of EBC at the traffic site and fossil fuel at the rural one (Table 7.1). One major difference between the two sites is the total lack of a diurnal variation at the rural background site, which indicate no or minor local influence for both fossil fuel and biomass burning, and that long-range atmospheric transport prevails. Figure 7.2B shows that EBC<sub>ff</sub> was higher than EBC<sub>bb</sub> for all hours of the day. The AAE<sub>ff</sub> value (0.96) obtained from the PMF-approach was highly similar to that derived for Brenner, whereas AAE<sub>bb</sub> (1.27) was the lowest amongst the five sites assessed so far (Table 7.1).

Diurnal variation cannot be used to validate the Hyytiälä  $EBC_{bb}$  and  $EBC_{ff}$  signals since none is seen or expected. However,  $EBC_{bb}$  shows a very high correlation with levoglucosan ( $r^2 = 0.962$ ) (Figure 7.2D). As for the Brenner site, this implies that the PMF approach performs very well.

Preliminary data from ongoing PMF analysis indicates a certain variability compared to sites presented in this chapter with respect to AAE and MAC, whereas the levels of correlation between the absorption coefficient and EC, and between EBC<sub>bb</sub> and levoglucosan, are rather consistent. Our findings so far, although preliminary and for a few sites only, are promising with respect to reveal differences in the influence of fossil fuel (45-74%) and biomass (26-55%) to EBC at sites across Europe. We think that IMP Winter 2018 has the potential to extend greatly our current knowledge on this topic and that this joint effort will be successful.

#### 7.7 Work ahead

The results presented provide only a snapshot of which information can be extracted from the core data collected in the IMP Winter 2018. In future, other issues will be addressed as well. The results should be considered preliminary, as adjustments to the PMF approach and the data treatment still is likely, but the PMF-approach as used here is close to a final version, and will be presented in a forthcoming paper (Platt et al., in prep.). Data will be analysed according to the PMF-approach as soon as possible after they are submitted to EMEP and found to have a sufficient data- and metadata quality.

There are several additional measurements connected to IMP winter 2018, including absorption measurements by MAAP (Multi Angle Absorption Photometer), chemical composition measurements by ACSM (Aerosol Chemical Speciation Monitor) and various organic tracer analysis. Further, there will be a possibility to select filter samples from some sites for <sup>14</sup>C-analysis of EC. Which sites to be selected for <sup>14</sup>C analysis, as well as ad hoc studies, will be discussed at the COLOSSAL COST action meeting in Bucharest 24-28 Sept.

#### References

- Sandradewi, J., Prevot, A. S. H., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol., 42, 3316–3323, doi:10.1021/es702253m, 2008.
- Yttri, K., Aas, W., Bjerke, A., Ceburnus, D., Dye, C., Emblico, L., Facchini, M., Forster, C., Hanssen, J., Hansson, H., Jennings, S., Maenhaut, W., and Tørseth, K.: Elemental and organic carbon in PM<sub>10</sub>: A one year measurement campaign within the European Monitoring and Evaluation Programme EMEP, Atmos. Chem. Physics, 7, 56711–5725, 2007.
- Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., and Prévôt, A. S. H.: Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol, Atmospheric Chemistry and Physics, 17, 4229–4249, doi:10.5194/acp-17-4229-2017, URL https://www.atmos-chemphys.net/17/4229/2017/, 2017.

# Part III

# **Technical EMEP Developments**

### CHAPTER 8

#### Updates to the EMEP MSC-W model, 2017-2018

## David Simpson, Peter Wind, Robert Bergström, Michael Gauss, Svetlana Tsyro and Alvaro Valdebenito

This chapter summarises the changes made to the EMEP MSC-W model since Simpson et al. (2017) and, along with changes discussed in Simpson et al. (2013, 2015, 2016) and Tsyro et al. (2014), updates the standard description given in Simpson et al. (2012). The model version used for reporting this year is denoted rv4.17a, which is a slight update of the rv4.17 code released in February 2018. Table 8.2 summarises the changes made in the EMEP model since the version documented in Simpson et al. (2012).

Most of the changes made since last year have been concerned with improvements to the model code and usability, and these have had little impact on model results. One major change did occur, however, and that concerns the treatment of photosynthetically active radiation (PAR) in the model, which impacts both biogenic VOC emissions and ozone flux estimates. Section 8.1 briefly summarises changes to the model in general, and Sect. 8.2 addresses the change in PAR in more detail.

#### 8.1 Overview of changes

#### 8.1.1 Chemistry

Several corrections/improvements were made to the EmChem16 mechanism introduced in Simpson et al. (2017):

- Exclude the unimportant (see Stadtler et al. 2018) O<sub>3</sub>-dust gas-aerosol reaction.
- Bug-fix for rv4.17a: removed duplicated gas-aerosol reaction of NO<sub>3</sub> to give HNO<sub>3</sub>.
- bug-fixes for HONO and OD+H2O rates, and for gamma (small effects).

#### 8.1.2 Configuration

- Many small changes to make model configuration easier and more flexible; see the User Guide for further explanation of some new methods and possibilities. Some module names were also changed to reflect better the content (eg ModelConstant\_ml is now Config\_module).
- Alternative paths to all input files can be defined in the config files.

#### 8.1.3 Deposition

•  $N_2O_5$  is now given the same deposition rate as  $HNO_3$ . This has a small impact on deposition and concentrations of other species on the European scale, but is important for global scale studies such as Stadtler et al. (2018).

#### 8.1.4 Emissions

- Improved compatibility between the older SNAP and new GNFR emission sectors. Can force SNAP or GNFR sectors, even when the emissions are defined in the other system. It is also possible to mix GNFR and SNAP emissions in the same run. So far the splits, timefactors and release heights have not yet been defined specifically for GNFR sectors and a simple mapping onto SNAP values is used.
- Now have option to use same monthly time series for  $NH_3$  as the LOTOS model (Schaap et al. 2004, Hendriks et al. 2016) for European runs.
- The 'femis' file used to control emission changes per country and sector can now operate for an area defined by lon/lat.
- rv4.17a fixed a bug concerning CO emissions from biomass burning that had been introduced in rv4.17.
- A climatological mode was added for forest-fire emissions, sometimes needed when real data is not available for specific years.

#### 8.1.5 Landcover

• A new file landcover file (glc2000xCLMf18) is now used, again a merge of GLC2000 and CLM as in Simpson et al. (2017). This change was made to fix a bug in treatment of deserts, to better distinguish them from bare soil.

#### 8.1.6 Meteorology

- Radiation. The Weiss and Norman (1985) radiation scheme was introduced to give better estimates of diffuse versus direct radiation, which is important in modelling both ozone update and biogenic VOC emissions. This makes rather a large difference in some ozone update calculations, and is discussed further in Sect. 8.2 below.
- Improvements were made for compatibility with AROME meteorology.

Table 8.1: Definition of the vertical layer boundaries  $(A_k, B_k)$  used in this year's status runs. Example pressure levels and heights for a standard atmosphere (with  $P_{surf} = 101325.0$  Pa) are also given. The pressure at each level boundary is defined by  $P_k = A_k + B_k \cdot P_{surf}$ .

| k  | $A_k$ (Pa)  | $B_k$   | $P_k^*$ | $h_k$   |  |  |
|----|-------------|---------|---------|---------|--|--|
|    |             |         | (hPa)   | (m)     |  |  |
| 1  | 10000.00000 | 0.00000 | 100.00  | 16179.7 |  |  |
| 2  | 12077.44629 | 0.00182 | 122.61  | 14886.8 |  |  |
| 3  | 15379.80566 | 0.01114 | 165.09  | 13000.6 |  |  |
| 4  | 18045.18359 | 0.03412 | 215.03  | 11324.7 |  |  |
| 5  | 19755.10938 | 0.07353 | 272.06  | 9812.0  |  |  |
| 6  | 20429.86328 | 0.13002 | 336.04  | 8396.6  |  |  |
| 7  | 20097.40234 | 0.20248 | 406.13  | 7077.7  |  |  |
| 8  | 18864.75000 | 0.28832 | 480.79  | 5862.2  |  |  |
| 9  | 16899.46875 | 0.38389 | 557.97  | 4757.0  |  |  |
| 10 | 14411.12402 | 0.48477 | 635.31  | 3767.5  |  |  |
| 11 | 11632.75879 | 0.58617 | 710.26  | 2897.6  |  |  |
| 12 | 8802.35644  | 0.68327 | 780.35  | 2149.1  |  |  |
| 13 | 6144.31494  | 0.77160 | 843.26  | 1522.2  |  |  |
| 14 | 3850.91333  | 0.84737 | 897.11  | 1015.0  |  |  |
| 15 | 2063.77979  | 0.90788 | 940.55  | 623.5   |  |  |
| 16 | 855.36176   | 0.95182 | 972.99  | 340.7   |  |  |
| 17 | 467.33359   | 0.96765 | 985.14  | 236.7   |  |  |
| 18 | 210.39389   | 0.97966 | 994.75  | 155.2   |  |  |
| 19 | 65.88924    | 0.98827 | 1002.02 | 93.9    |  |  |
| 20 | 7.36774     | 0.99402 | 1007.26 | 49.9    |  |  |
| 21 | 0.00000     | 1.00000 | 1013.25 | 0.0     |  |  |

- Snow-depth from ECMWF is now multiplied by a factor 5 by default, as a simple conversion from water-equivalent to physical depth of snow. (bug-fix)
- Corrected bug in variable used for snow depth from WRF fields.

#### 8.1.7 Vertical resolution

The EMEP model has had the ability to use a flexible number and definition of vertical levels for some years. Although not a change in the model code, this year's runs have used a new definition of these vertical layers. Unlike 'traditional' runs that used 20 layers and lowest level at around 90 m, and runs in EMEP Status Report 1/2017 (2017) that used 34 levels, the status runs this year use 20 levels and a lowest level at ca. 50m. Compared to the previously used sigma layers (e.g. Simpson et al. 2012) the layer boundaries have now been selected to match the original ECMWF-IFS layers. Table 8.1 summarises the coefficients used in these runs, and the associated pressure and height values for a standard atmosphere.

#### 8.2 Radiation issues

As pointed out by Ferd Sauter and Roy Wichink Kruit (RIVM), the equations used to calculate direct and diffuse radiation (eqns. 12-13 of Simpson et al. 2012) result in incorrect scaling between the different components. For this reason, a new system was introduced into model version rv4.16 in late 2017. The new system uses the formulation of Weiss and Norman (1985). In investigating differences between the two schemes, we also found a bug in units scaling for the previous implementation. The radiation scheme used in newer code (rv4.16 onwards) therefore produces significantly lower PAR values than the rv4.15 and earlier schemes. Although this change has very limited impact on most results and pollutants, calculations of photo-toxic ozone dose (POD) were found to be rather large in some case, especially for forests. This is illustrated in Fig. 8.1, which compares results from two model runs using identical emissions and meteorology, but versions rv4.15 and rv4.17. It can be seen that ozone itself is hardly affected by this change, but POD1 values for deciduous forests are about 30% lower with rv4.17 than with rv4.15. In both cases the two model versions correlate extremely well.

At first sight, the lack of sensitivity of POD<sub>3</sub>IAM to this problem seem surprising because higher thresholds (Y in PODY) tend to lead to greater sensitivity (Tuovinen et al. 2007). However, the light response coefficients used in the calculation of stomatal conductance ( $g_{sto}$ ) are quite different for crops and forests, such that  $g_{sto}$  for forests is more likely to be limited by low PAR values than crops. Further, the accumulation season for POD<sub>3</sub>IAM in crops is shorter (90 days for IAM\_CR) and confined to the summer period when light levels are not limiting, whereas the accumulation season for POD1 extends into the spring and autumn and thus includes more periods when light-levels act to limit  $g_{sto}$ . The impacts of this change will be investigated in more detail in the coming months.

#### 8.3 Acknowledgments

Thanks are due to Ferd Sauter and Roy Wichink Kruit from RIVM for first pointing out problems with the radiation formulation, to John Johansson (Chalmers) for spotting problems with snow fields in WRF, and to Massimo Vieno (CEH, Edinburgh) for pointing out various landcover and other issues with the model.

Table 8.2: Summary of major EMEP MSC-W model versions from 2012–2017. Extends Table S1 of Simpson et al. 2012

| Version                  | Update                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{Ref}^{(a)}$ |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| rv4.17a                  | Used for this report. Small updates                                                                                                                                                                                                                                                                                                                                                                                                                        | This report                |
| rv4.17                   | Public domain (Feb. 2018)                                                                                                                                                                                                                                                                                                                                                                                                                                  | This report                |
|                          | $H_3$ emissions; corrections to snow cover                                                                                                                                                                                                                                                                                                                                                                                                                 | This report                |
| rv4.16                   | New radiation scheme (Weiss&Norman); Added dry and wet deposition for $N_2O_5$ ; (Used for Stadtler et al. 2018, Mills et al. 2018b)                                                                                                                                                                                                                                                                                                                       | This report                |
| rv4.15                   | EmChem16 scheme                                                                                                                                                                                                                                                                                                                                                                                                                                            | R2017                      |
| rv4.14                   | Updated chemical scheme                                                                                                                                                                                                                                                                                                                                                                                                                                    | R2017                      |
| rv4.12                   | New global land-cover and BVOC                                                                                                                                                                                                                                                                                                                                                                                                                             | R2017                      |
| rv4.10                   | Public domain (Oct. 2016) (Used for Mills et al. 2018a)                                                                                                                                                                                                                                                                                                                                                                                                    | R2016                      |
| rv4.9                    | Updates for GNFR sectors, DMS, sea-salt, dust, $\rm S_A$ and $\rm \gamma, N_2O_5$                                                                                                                                                                                                                                                                                                                                                                          |                            |
| rv4.8                    | Public domain (Oct. 2015)                                                                                                                                                                                                                                                                                                                                                                                                                                  | R2015                      |
|                          | ShipNOx introduced. Used for EMEP HTAP2 model calculations, see see acp special issue: https://www.atmos-chem-phys.net/special_issue390.html). Also for Jonson et al. (2017).                                                                                                                                                                                                                                                                              |                            |
| rv4.7                    | Used for reporting, summer 2015 : New calculations of aerosol surface area; ; New gas-aerosol uptake and $N_2O_5$ hydrolysis rates ; Added 3-D calculations pf aerosol extinction and AODs; ; Emissions - new flexible mechanisms for interpolation and merging sources ; Global - monthly emissions from ECLIPSE project ; Global - LAI changes from LPJ-GUESS model ; WRF meteorology (Skamarock and Klemp 2008) can now be used directly in EMEP model. | R2015                      |
| rv4.6                    | Used for Euro-Delta SOA runs<br>Revised boundary condition treatments ; ISORROPIA capability added                                                                                                                                                                                                                                                                                                                                                         | R2015                      |
| rv4.5                    | Sixth open-source (Sep 2014)<br>Improved dust, sea-salt, SOA modelling ; AOD and extinction coefficient cal-<br>culations updated ; Data assimilation system added ; Hybrid vertical coordi-<br>nates replace earlier sigma ; Flexibility of grid projection increased.                                                                                                                                                                                    | R2014                      |
| rv4.4                    | Fifth open-source (Sep 2013) ; Improved dust and sea-salt modelling ; AOD and extinction coefficient calculations added ; gfortran compatibility improved                                                                                                                                                                                                                                                                                                  | R2014, R2013               |
| rv4.3                    | Fourth public domain (Mar. 2013) ; Initial use of namelists ; Smoothing of MARS results ; Emergency module for volcanic ash and other events; Dust and road-dust options added as defaults ; Advection algorithm changed                                                                                                                                                                                                                                   | R2013                      |
| rv4.0<br>v2011-06<br>rv3 | Third public domain (Sep. 2012)<br>As documented in Simpson et al. (2012)<br>Second public domain (Aug. 2011)<br>First public domain (Sep. 2008)                                                                                                                                                                                                                                                                                                           | R2013                      |

Notes: (a) R2015 refers to EMEP Status report 1/2015, etc.



Figure 8.1: Comparison of model versions rv4.15 and rv4.17 for mean ozone (top-left), POD1 for IAM deciduous forests (top-right) and POD<sub>3</sub>IAM for crops (bottom). The dashed line represents the 1:1 line. Calculations are for the year 2012, using the 50km version of the model.

#### References

- EMEP Status Report 1/2017: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components, EMEP MSC-W & CCC & CEIP, Norwegian Meteorological Institute (EMEP/MSC-W), Oslo, Norway, 2017.
- Hendriks, C., Kranenburg, R., Kuenen, J., den Bril, B. V., Verguts, V., and Schaap, M.: Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe, Atmos. Environ., 131, 83 – 96, doi:http://dx.doi.org/10.1016/j.atmosenv.2016.01.043, URL http://www. sciencedirect.com/science/article/pii/S1352231016300668, 2016.
- Jonson, J. E., Borken-Kleefeld, J., Simpson, D., Nyíri, A., Posch, M., and Heyes, C.: Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe, Environ. Res. Lett., 12, 094017, URL http://stacks.iop.org/1748-9326/12/i=9/a=094017, 2017.
- Mills, G., Sharps, K., Simpson, D., Pleijel, H., Broberg, M., Uddling, J., Jaramillo, F., Davies, William, J., Dentener, F., Berg, M., Agrawal, M., Agrawal, S., Ainsworth, E. A., Büker, P., Emberson, L., Feng, Z., Harmens, H., Hayes, F., Kobayashi, K., Paoletti, E., and Dingenen, R.: Ozone pollution will compromise efforts to increase global wheat production, Global Change Biol., 24, 3560–3574, doi:10.1111/gcb.14157, URL https: //onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14157, 2018a.
- Mills, G., Sharps, K., Simpson, D., Pleijel, H., Frei, M., Burkey, K., Emberson, L., Uddling, J., Broberg, M., Feng, Z., Kobayashi, K., and Agrawal, M.: Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance, Global Change Biology, 0, doi:10.1111/gcb.14381, URL https://onlinelibrary.wiley.com/doi/abs/ 10.1111/gcb.14381, 2018b.
- Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and Builtjes, P. J. H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Physics, 4, 857–874, 2004.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Physics, 12, 7825–7865, doi:10.5194/acp-12-7825-2012, 2012.
- Simpson, D., Tsyro, S., Wind, P., and Steensen, B. M.: EMEP model development, in: Transboundary acidification, eutrophication and ground level ozone in Europe in 2011. EMEP Status Report 1/2013, The Norwegian Meteorological Institute, Oslo, Norway, 2013.
- Simpson, D., Tsyro, S., and Wind, P.: Updates to the EMEP/MSC-W model, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2015, pp. 129–138, The Norwegian Meteorological Institute, Oslo, Norway, 2015.

- Simpson, D., Nyíri, A., Tsyro, S., Valdebenito, Á., and Wind, P.: Updates to the EMEP/MSC-W model, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2016, The Norwegian Meteorological Institute, Oslo, Norway, 2016.
- Simpson, D., Bergström, R., Imhof, H., and Wind, P.: Updates to the EMEP MSC-W model, 2016-2017, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2017, The Norwegian Meteorological Institute, Oslo, Norway, 2017.
- Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comp. Phys., 227, 3465–3485, doi:10.1016/j.jcp.2007.01.037, 2008.
- Stadtler, S., Simpson, D., Schröder, S., Taraborrelli, D., Bott, A., and Schultz, M.: Ozone impacts of gas-aerosol uptake in global chemistry-transport models, Atmos. Chem. Physics, 18, 3147–3171, doi:10.5194/acp-18-3147-2018, URL https://www.atmos-chem-phys.net/18/3147/2018/, 2018.
- Tsyro, S., Karl, M., Simpson, D., Valdebenito, A., and Wind, P.: Updates to the EMEP/MSC-W model, in: Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. EMEP Status Report 1/2014, pp. 143–146, The Norwegian Meteorological Institute, Oslo, Norway, 2014.
- Tuovinen, J.-P., Simpson, D., Ashmore, M., Emberson, L., and Gerosa, G.: Robustness of modelled ozone exposures and doses, Environ. Poll., 146, 578–586, 2007.
- Weiss, A. and Norman, J. M.: Partitioning Solar-radiation into Direct and Diffuse, Visible and Near-infrared Components, Agricultural and Forest Meteorology, 34, 205–213, doi:10.1016/0168-1923(85)90020-6, 1985.

### CHAPTER 9

# Developments in the monitoring network, data quality and database infrastructure

Wenche Aas, Anne Hjellbrekke, Richard Olav Rud and Kjetil Tørseth

#### 9.1 Compliance with the EMEP monitoring strategy

The monitoring obligations in EMEP are defined by the Monitoring Strategy for 2010-2019 (UNECE (2009), Tørseth et al. (2012)). The complexity in the monitoring program with respect to the number of variables and sites, whether parameters are a level 1 or level 2, and the required time resolution (hourly, daily, weekly), makes it challenging to assess whether a country is in compliance. CCC has developed an index to illustrate to what extent the Parties comply, how implementation compares with other countries, and how activities evolve with time.

For the level 1 parameters an index is defined, calculated based on what has been reported compared to what is expected. EMEP recommends one site pr 50.000 km<sup>2</sup>, but this target number is adjusted for very large countries (i.e. KZ, RU, TR and UA). The components and number of variables to be measured in accordance to the strategy are as follows: major inorganic ions in precipitation (10 variables), major inorganic components in air (13 variables), ozone (1 variable), PM mass (2 variables) and heavy metals in precipitation (7 variables). For heavy metals, the sampling frequency is weekly, and for the other components it is daily or hourly (ozone). Based on the relative implementation of the different variables, the index has been given the following relative weights: Inorganics in precipitation: 30%, inorganics in air: 30%, ozone: 20%, PM mass: 10%, heavy metals: 10%.

Figure 9.1 summarises implementation in 2016 compared to 2000, 2005 and 2010. The countries are sorted from left to right with increasing index for 2016. Slovenia has a full score as they measure all the required parameters with satisfactory sampling frequency. Estonia, The Netherlands, Slovakia, Denmark, and Switzerland have almost complete program with



Figure 9.1: Index for implementation of the EMEP monitoring strategy, level 1 based on what has been reported for 2000, 2005, 2010 and 2016. \* means adjusted land area

an index of 90% or higher. Small countries with requirements of less number of level 1 sites seem to comply easier than large countries. Since 2010, 42% of the Parties have improved their monitoring programme, while 30% have a decrease. Improvements are seen in e.g. Germany and Latvia. One Party, Malta, has reported data in 2016 and not in 2000 while Croatia, Georgia, Moldova, Montenegro and Romania have stopped reporting/measuring. In Figure 2.4 in Chapter 2.2, the geographical distribution of level 1 sites is shown for 2016. In large parts of Europe implementation of the EMEP monitoring strategy is far from satisfactory.

For the level 2 parameters, an index based system has not been defined, but mapping the site distribution illustrate the compliance to the monitoring strategy. 52 sites from 19 different Parties reported at least one of the required EMEP level 2 parameters relevant to this report (aerosols (47 sites), photo-oxidants (18 sites) and trace gases (5 sites)). The sites with measurements of POPs and heavy metals are covered in the EMEP status reports 2 and 3. Figure 9.2 shows that level 2 measurements of aerosols have better spatial coverage than oxidant precursors (VOC + methane) and trace gases. Few sites have a complete measurement program, and only 12 sites have a complete aerosol program. Nevertheless, regarding the aerosol monitoring, there have been large improvements in the spatial coverage and the data quality over the last decade. Standardization and reference methodologies have been developed, and the reporting has improved significantly with much more metadata information available. For oxidant precursors and trace gases, there are ongoing improvement in the measurement capabilities resulting from recent development in ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) and in co-operation with the WMO Global Atmospheric



Figure 9.2: Sites measuring and reporting EMEP level 2 parameters for the year 2016

Watch Programme (GAW).

#### 9.2 Updates in reporting templates and guidelines

In addition to the requirement that variables has to be measured as defined in the EMEP monitoring strategy discussed above, it is important that the data are reported in time to ensure that they can be quality assured and included in the database. This allows them to be included in the annual model validation, interpretations for the EMEP status reports, as well as other regional assessments and studies carried out beyond EMEP.

Figure 9.3 shows the status of the submission of data for 2016 and to what extent the data were reported in time. It is obvious that large volumes of data are reported late and some not at all. Of the 32 Parties reporting either level 1 or level 2 data, less than 60% reported within the deadline of 31 July 2017.



Figure 9.3: Submission of 2016 data to EMEP/CCC.

To improve the timelines and quality of the data reporting, an online data submission and validation tool was launched in spring 2016 (http://ebas-submit-tool.nilu.no) This tool gives data submitters a possibility to check and correct their files before submitting them. The tool gives information on how to best troubleshoot errors in the file, including information on how to format the data files, as well as offering the user a way to plot data.

The tool is designed to give the data submitters direct feedback on the formatted NASA Ames files and to deliver files through online data submission.

The format checker is directly linked to all (approx. 40) data format templates located at http://ebas-submit.nilu.no/ and the ftp server designed for incoming data. EMEP data should be submitted using this submission tool, unless otherwise have been agreed upon. The requirement of checking the data files using the submission tool has significantly improved the correctness in the data files submitted.

The tool has been further developed to give better feedback when errors in the files occur. Automatic checks for inconsistency and outliers have been developed. In the coming year(s) there will be more focus on developing additional software tools for automatic creation of NASA Ames files directly from the output from various instruments for either regular annual reporting or Near-Real Time data submission, in addition to tools for checking the data based on requirements of consistency, completeness, data quality etc. defined by the different stakeholders i.e. EMEP, ACTRIS and WMO GAW.

#### References

- Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Physics, 12, 5447–5481, doi:10.5194/acp-12-5447-2012, URL http:// www.atmos-chem-phys.net/12/5447/2012/, 2012.
- UNECE: Progress in activities in 2009 and future work. Measurements and modelling (acidification, eutrophication, photooxidants, heavy metals, particulate matter and persistent organic pollutants). Draft revised monitoring strategy., Tech. Rep. ECE/EB.AIR/GE.1/2009/15, UNECE, URL http://www.unece.org/env/ documents/2009/EB/ge1/ece.eb.air.ge.1.2009.15.e.pdf, 2009.

# Part IV Appendices

## APPENDIX A

#### National emissions for 2016 in the EMEP domain

This appendix contains the national emission data for 2016 used throughout this report for main pollutants and primary particle emissions in the new EMEP domain, which covers the geographic area between 30°N-82°N latitude and 30°W-90°E longitude.

These are the emissions that are used as basis for the 2016 source-receptor calculations. Results of these source-receptor calculations are presented in Appendix C.

The land-based emissions for 2016 have been derived from the 2018 official data submissions to UNECE CLRTAP (Burgstaller et al. 2018).

Emissions from international shipping occurring in different European seas within the EMEP domain are not reported to UNECE CLRTAP, but derived from other sources. This year's update uses global shipping emissions from FMI (Finish Meteorological Institute) for the year 2015, which are calculated using the STEAM model (Jalkanen et al. 2016) based on real ship movements obtained from data collected through the Automatic Identification System (AIS). NMVOC emissions from international shipping have been estimated to be 10.9% of the CO emissions.

Natural marine emissions of dimethyl sulphid (DMS) are calculated dynamically during the model run and vary with current meteorological conditions.

 $SO_x$  emissions from passive degassing of Italian volcanoes (Etna, Stromboli and Vulcano) are reported by Italy.

Note that emissions in this appendix are given in different units than used elsewhere in this report in order to keep consistency with the reported data.

#### References

- Burgstaller, J., Mareckova, K., Pinterits, M., Tista, M., Ullrich, B., and Wankmüller, R.: Inventory review 2018. Review of emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded and LPS data, EMEP/CEIP 4/2018, EEA/CEIP Vienna, 2018.
- Jalkanen, J.-P., Johansson, L., and Kukkonen, J.: A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011, Atmos. Chem. Physics, 16, 71– 84, doi:10.5194/acp-16-71-2016, URL http://www.atmos-chem-phys.net/16/ 71/2016/acp-16-71-2016.pdf, 2016.

## Table A:1: National total emissions for 2016 in the EMEP domain. Unit: Gg. (Emissions of $SO_x$ and $NO_x$ are given as $Gg(SO_2)$ and $Gg(NO_2)$ , respectively.)

| Area/Pollutant               | $SO_x$ | $NO_x$ | NH <sub>3</sub> | NMVOC | СО    | PM <sub>2.5</sub> | PM <sub>co</sub> | PM10 |
|------------------------------|--------|--------|-----------------|-------|-------|-------------------|------------------|------|
| Albania                      | 15     | 25     | 24              | 38    | 173   | 15                | 4                | 19   |
| Armenia                      | 39     | 18     | 19              | 36    | 107   | 4                 | 2                | 6    |
| Austria                      | 14     | 154    | 68              | 138   | 565   | 18                | 13               | 31   |
| Azerbaijan                   | 18     | 80     | 74              | 91    | 137   | 5                 | 11               | 16   |
| Belarus                      | 56     | 143    | 136             | 291   | 760   | 39                | 9                | 48   |
| Belgium                      | 42     | 193    | 68              | 114   | 368   | 25                | 9                | 34   |
| Bosnia and Herzegovina       | 191    | 31     | 21              | 34    | 95    | 14                | 12               | 26   |
| Bulgaria                     | 105    | 125    | 50              | 84    | 245   | 32                | 16               | 48   |
| Croatia                      | 15     | 52     | 35              | 70    | 202   | 18                | 7                | 26   |
| Cyprus                       | 16     | 15     | 6               | 9     | 15    | 1                 | 1                | 2    |
| Czech Republic               | 115    | 165    | 73              | 213   | 798   | 39                | 12               | 52   |
| Denmark                      | 10     | 115    | 75              | 103   | 244   | 21                | 11               | 31   |
| Estonia                      | 30     | 31     | 12              | 22    | 140   | 7                 | 4                | 11   |
| Finland                      | 40     | 131    | 31              | 88    | 324   | 20                | 13               | 33   |
| France                       | 140    | 842    | 630             | 608   | 2737  | 170               | 85               | 255  |
| Georgia                      | 13     | 38     | 36              | 40    | 168   | 17                | 4                | 22   |
| Germany                      | 356    | 1218   | 663             | 1052  | 2864  | 101               | 102              | 203  |
| Greece                       | 69     | 244    | 60              | 200   | 399   | 33                | 29               | 62   |
| Hungary                      | 23     | 117    | 87              | 141   | 450   | 53                | 20               | 73   |
| Iceland                      | 50     | 24     | 5               | 7     | 122   | 1                 | 0                | 2    |
| Ireland                      | 14     | 112    | 117             | 108   | 103   | 15                | 14               | 29   |
| Italy                        | 116    | 761    | 382             | 904   | 2310  | 162               | 31               | 193  |
| Kazakhstan                   | 714    | 760    | 238             | 297   | 1313  | 172               | 61               | 232  |
| Kyrgyzstan                   | 53     | 62     | 36              | 70    | 319   | 12                | 5                | 17   |
| Latvia                       | 3      | 35     | 16              | 40    | 115   | 16                | 8                | 24   |
| Liechtenstein                | 0      | 1      | 0               | 0     | 1     | 0                 | 0                | 0    |
| Lithuania                    | 15     | 54     | 34              | 52    | 145   | 6                 | 7                | 13   |
| Luxembourg                   | 1      | 20     | 6               | 13    | 22    | 2                 | 1                | 2    |
| Malta                        | 2      | 5      | 1               | 3     | 6     | 1                 | 1                | 1    |
| Monaco                       | 0      | 0      | 0               | 0     | 1     | 0                 | 0                | 0    |
| Montenegro                   | 51     | 14     | 2               | 8     | 30    | 5                 | 8                | 13   |
| Netherlands                  | 28     | 254    | 127             | 141   | 559   | 13                | 14               | 26   |
| Norway                       | 16     | 151    | 28              | 152   | 380   | 27                | 8                | 36   |
| Poland                       | 582    | 726    | 267             | 609   | 2506  | 146               | 114              | 259  |
| Portugal                     | 47     | 161    | 56              | 154   | 322   | 47                | 18               | 65   |
| Republic of Moldova          | 9      | 27     | 23              | 49    | 81    | 11                | 5                | 16   |
| Romania                      | 108    | 211    | 167             | 258   | 742   | 110               | 31               | 141  |
| Russian Federation           | 2080   | 3154   | 1196            | 3548  | 12163 | 389               | 373              | 762  |
| Serbia                       | 408    | 145    | 65              | 127   | 276   | 41                | 14               | 55   |
| Slovakia                     | 27     | 67     | 30              | 64    | 240   | 27                | 7                | 34   |
| Slovenia                     | 5      | 37     | 18              | 31    | 110   | 12                | 1                | 13   |
| Spain                        | 218    | 765    | 492             | 594   | 1661  | 128               | 72               | 200  |
| Sweden                       | 19     | 131    | 53              | 159   | 429   | 18                | 19               | 38   |
| Switzerland                  | 6      | 63     | 57              | 71    | 162   | 7                 | 10               | 17   |
| Tajikistan                   | 18     | 10     | 51              | 18    | 112   | 5                 | 2                | 7    |
| TFYR of Macedonia            | 59     | 22     | 11              | 27    | 74    | 14                | 7                | 21   |
| Turkey                       | 2251   | 703    | 713             | 1071  | 2003  | 385               | 330              | 715  |
| Turkmenistan                 | 12     | 97     | 98              | 75    | 262   | 18                | 3                | 21   |
| Ukraine                      | 778    | 648    | 281             | 521   | 2130  | 143               | 70               | 213  |
| United Kingdom               | 179    | 916    | 289             | 821   | 1536  | 109               | 63               | 172  |
| Uzbekistan                   | 29     | 177    | 248             | 112   | 478   | 22                | 10               | 32   |
| North Africa                 | 1602   | 1385   | 569             | 1244  | 2530  | 142               | 119              | 261  |
| Asian areas (AST)            | 5720   | 6696   | 3987            | 9011  | 21551 | 1526              | 830              | 2356 |
| Baltic Sea                   | 8      | 257    | 0               | 2     | 17    | 8                 | 1                | 8    |
| Black Sea                    | 36     | 86     | 0               | 1     | 6     | 6                 | 0                | 6    |
| Mediterranean Sea            | 554    | 1115   | 0               | 8     | 17    | 80                | 5                | 85   |
| North Sea                    | 26     | 565    | 0               | 5     | 42    | 19                | 1                | 20   |
| Remaining N-E Atlantic Ocean | 355    | 689    | 0               | 5     | 49    | 50                | 3                | 53   |
| Natural marine emissions     | 2390   | 0      | 0               | 0     |       | 0                 | 0                | 0    |
| voicanic emissions           | 943    | 0      | 0               | 0     | 0     | 4527              | 0                | 0    |
| IUIAL                        | 20840  | 24841  | 11835           | 23755 | 65774 | 4527              | 2629             | /155 |
# APPENDIX B

# National emission trends

This appendix contains trends of national emission data for main pollutants and primary particle emissions for the years 2000–2016 in the new EMEP domain, which covers the geographic area between 30°N-82°N latitude and 30°W-90°E longitude.

The land-based emissions for 2000–2016 have been derived from the 2016 official data submissions to UNECE CLRTAP (Burgstaller et al. 2018).

Emissions from international shipping occurring in different European seas within the EMEP domain are not reported to UNECE CLRTAP, but derived from other sources. This year's update uses global shipping emissions from FMI (Finish Meteorological Institute) for the year 2015 (and also for 2011 in case of  $NO_x$  and  $SO_x$  in Baltic and North Sea), which is based on AIS (Automatic Identification System) tracking data. For the year 2016 a copy of the FMI emission values for 2015 was used. For the years 2000–2014 the FMI data was adjusted regarding trends from data developed within the EU Horizon2020 project MACC-III (MACC-III 2015) and the ICCT Report (Olmer et al. 2017). NMVOC emissions from international shipping have been estimated to be 10.9% of the CO emissions.

Natural marine emissions of dimethyl sulphid (DMS) are calculated dynamically during the model run and vary with current meteorological conditions.

 $SO_x$  emissions from passive degassing of Italian volcanoes (Etna, Stromboli and Vulcano) are those reported by Italy.  $SO_x$  and PM emissions from volcanic eruptions of Icelandic volcanoes in the period 2000–2016 (Eyjafjallajökull in 2010 and Barðarbunga in 2014-2015) are reported by Iceland. Emissions from the eruption of Grímsvötn volcano in May 2011 are not included in the table, as the eruption event has not been included in the model simulations.

Note that emissions in this appendix are given in different units than used elsewhere in this report in order to keep consistency with the reported data.

## References

- Burgstaller, J., Mareckova, K., Pinterits, M., Tista, M., Ullrich, B., and Wankmüller, R.: Inventory review 2018. Review of emission data reported under the LRTAP Convention and NEC Directive. Stage 1 and 2 review. Status of gridded and LPS data, EMEP/CEIP 4/2018, EEA/CEIP Vienna, 2018.
- MACC-III: Report on the update of global and European anthropogenic emissions., Tech. Rep. COPERNICUS Grant agreement 633080, MACC-III (Monitoring Atmospheric Composition and Climate, 2015.
- Olmer, N., Comer, B., Roy, B., Mao, X., and Rutherford, D.: Greenhouse gas emissions from global shipping, 2013-2015, The international Council on Clean Transportation (ICCT), URL https://www.theicct.org/publications/GHG-emissions-global-shipping-2013-2015, 2017.

Table B:1: National total emission trends of sulphur (2000-2007), as used for modelling at the MSC-W (Gg of  $SO_2$  per year).

| Area/Year                    | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 34    | 34    | 36    | 40    | 41    | 34    | 34    | 37    |
| Armenia                      | 8     | 4     | 8     | 10    | 14    | 18    | 22    | 26    |
| Austria                      | 32    | 33    | 32    | 32    | 27    | 26    | 26    | 23    |
| Azerbaijan                   | 17    | 16    | 15    | 15    | 15    | 16    | 15    | 16    |
| Belarus                      | 135   | 130   | 125   | 120   | 115   | 110   | 105   | 100   |
| Belgium                      | 172   | 167   | 157   | 151   | 155   | 142   | 133   | 124   |
| Bosnia and Herzegovina       | 217   | 215   | 214   | 212   | 218   | 225   | 219   | 214   |
| Bulgaria                     | 862   | 828   | 758   | 827   | 791   | 778   | 765   | 820   |
| Croatia                      | 59    | 59    | 63    | 64    | 52    | 59    | 55    | 60    |
| Cyprus                       | 48    | 45    | 45    | 47    | 40    | 38    | 32    | 29    |
| Czech Republic               | 233   | 229   | 223   | 218   | 215   | 208   | 207   | 212   |
| Denmark                      | 33    | 30    | 29    | 35    | 29    | 26    | 30    | 27    |
| Estonia                      | 97    | 91    | 87    | 100   | 88    | 76    | 70    | 88    |
| Finland                      | 82    | 96    | 90    | 101   | 84    | 70    | 83    | 81    |
| France                       | 625   | 565   | 524   | 498   | 479   | 458   | 429   | 419   |
| Georgia                      | 12    | 4     | 4     | 4     | 4     | 5     | 3     | 5     |
| Germany                      | 646   | 625   | 561   | 533   | 493   | 473   | 474   | 458   |
| Greece                       | 553   | 558   | 546   | 554   | 549   | 570   | 525   | 509   |
| Hungary                      | 427   | 346   | 272   | 246   | 150   | 41    | 39    | 36    |
| Iceland                      | 35    | 39    | 41    | 37    | 32    | 39    | 40    | 58    |
| Ireland                      | 140   | 134   | 101   | 79    | 72    | 72    | 61    | 55    |
| Italy                        | 756   | 704   | 623   | 524   | 487   | 409   | 387   | 345   |
| Kazakhstan                   | 457   | 477   | 503   | 542   | 5/4   | 634   | 640   | 668   |
| Kyrgyzstan                   | 25    | 25    | 25    | 25    | 25    | 25    | 27    | 30    |
| Latvia                       | 18    | 14    | 13    | 20    | 9     | 8     | 8     | 8     |
|                              | 3/    | 44    | 38    | 29    | 28    | 26    | 28    | 27    |
| Malta                        | 24    | 4     | 25    | 27    | 11    | 11    | 11    | 12    |
| Malla                        | 14    | 20    | 15    | 15    | 11    | 11    | 11    | 12    |
| Netherlands                  | 78    | 70    | 71    | 66    | 60    | 67    | 67    | 63    |
| Norway                       | 27    | 25    | 23    | 23    | 25    | 24    | 21    | 20    |
| Poland                       | 1404  | 1379  | 1291  | 1273  | 1202  | 1164  | 1228  | 1166  |
| Portugal                     | 265   | 250   | 248   | 190   | 191   | 193   | 169   | 160   |
| Republic of Moldova          | 4     | 4     | 5     | 6     | 5     | 5     | 5     | 3     |
| Romania                      | 493   | 515   | 509   | 589   | 552   | 605   | 649   | 518   |
| Russian Federation           | 2867  | 2910  | 2952  | 2922  | 2747  | 2600  | 2657  | 2326  |
| Serbia                       | 448   | 439   | 462   | 484   | 497   | 429   | 445   | 457   |
| Slovakia                     | 126   | 131   | 103   | 104   | 96    | 89    | 88    | 71    |
| Slovenia                     | 94    | 63    | 63    | 60    | 50    | 40    | 17    | 16    |
| Spain                        | 1401  | 1341  | 1483  | 1224  | 1256  | 1215  | 1085  | 1053  |
| Sweden                       | 43    | 41    | 41    | 42    | 37    | 36    | 35    | 31    |
| Switzerland                  | 15    | 18    | 16    | 15    | 15    | 15    | 14    | 11    |
| Tajikistan                   | 5     | 7     | 8     | 7     | 9     | 8     | 10    | 13    |
| TFYR of Macedonia            | 106   | 108   | 97    | 95    | 96    | 97    | 94    | 99    |
| Turkey                       | 2242  | 1983  | 1872  | 1791  | 1779  | 2003  | 2160  | 2523  |
| Turkmenistan                 | 12    | 12    | 12    | 13    | 12    | 12    | 11    | 12    |
| Ukraine                      | 2310  | 1844  | 1329  | 1252  | 1048  | 1192  | 1446  | 1363  |
| United Kingdom               | 1286  | 1197  | 1077  | 1051  | 894   | 773   | 728   | 632   |
| Uzbekistan                   | 176   | 175   | 173   | 162   | 155   | 135   | 130   | 107   |
| North Africa                 | 982   | 1019  | 1056  | 1092  | 1129  | 1166  | 1187  | 1208  |
| Asian areas (AST)            | 3193  | 3191  | 3188  | 3186  | 3183  | 3181  | 3345  | 3509  |
| Baltic Sea                   | 181   | 180   | 179   | 179   | 1/8   | 1//   | 163   | 117   |
| Diack Sea                    | 571   | 58    | 39    | 41    | 42    | 43    | 40    | 42    |
| North See                    | 200   | 204   | 020   | 202   | 200   | 200   | /50   | 250   |
| Remaining N E Atlantia Occar | 275   | 290   | 394   | 392   | 390   | 388   | 405   | 420   |
| Natural marine amissions     | 2364  | 2318  | 2380  | 202   | 2208  | 7338  | 2376  | 2352  |
| Volcanic emissions           | 5746  | 4278  | 5300  | 3556  | 2290  | 1204  | 1308  | 840   |
|                              | 22040 | -12/0 | 20517 | 29201 | 2701  | 24027 | 1500  |       |
| IUIAL                        | 33049 | 30476 | 30567 | 28201 | 26560 | 24937 | 25583 | 24661 |

Table B:2: National total emission trends of sulphur (2008-2016), as used for modelling at the MSC-W (Gg of  $SO_2$  per year).

| Area/Year                    | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 29    | 29    | 27    | 25    | 23    | 21    | 19    | 17    | 15    |
| Armenia                      | 27    | 27    | 28    | 29    | 30    | 31    | 32    | 35    | 39    |
| Austria                      | 20    | 15    | 16    | 15    | 15    | 15    | 15    | 15    | 14    |
| Azerbaijan                   | 16    | 14    | 15    | 15    | 15    | 15    | 15    | 14    | 18    |
| Belarus                      | 84    | 80    | 59    | 63    | 68    | 61    | 53    | 57    | 56    |
| Belgium                      | 96    | 74    | 60    | 53    | 47    | 44    | 41    | 41    | 42    |
| Bosnia and Herzegovina       | 208   | 203   | 201   | 199   | 198   | 196   | 195   | 193   | 191   |
| Bulgaria                     | 571   | 443   | 388   | 516   | 330   | 195   | 189   | 142   | 105   |
| Croatia                      | 54    | 56    | 35    | 29    | 25    | 17    | 14    | 16    | 15    |
| Cyprus                       | 22    | 18    | 22    | 21    | 16    | 14    | 17    | 13    | 16    |
| Czech Republic               | 170   | 169   | 164   | 168   | 160   | 145   | 138   | 133   | 115   |
| Denmark                      | 21    | 15    | 15    | 14    | 12    | 13    | 11    | 10    | 10    |
| Estonia                      | 69    | 55    | 83    | 73    | 41    | 36    | 41    | 32    | 30    |
| Finland                      | 67    | 59    | 66    | 60    | 50    | 48    | 44    | 41    | 40    |
| France                       | 354   | 300   | 279   | 249   | 240   | 211   | 173   | 162   | 140   |
| Georgia                      | 6     | 12    | 12    | 11    | 11    | 11    | 12    | 12    | 13    |
| Germany                      | 455   | 398   | 411   | 401   | 382   | 374   | 359   | 364   | 356   |
| Greece                       | 439   | 367   | 219   | 158   | 133   | 119   | 103   | 99    | 69    |
| Hungary                      | 35    | 30    | 31    | 34    | 32    | 31    | 28    | 23    | 23    |
| Iceland                      | 74    | 69    | 74    | 73    | 84    | 70    | 63    | 56    | 50    |
| Ireland                      | 45    | 32    | 26    | 25    | 23    | 24    | 17    | 15    | 14    |
| Italy                        | 290   | 237   | 218   | 196   | 178   | 146   | 131   | 124   | 116   |
| Kazakhstan                   | 680   | 693   | 732   | 884   | 835   | 785   | 758   | 744   | 714   |
| Kyrgyzstan                   | 33    | 35    | 38    | 40    | 43    | 45    | 48    | 50    | 53    |
| Latvia                       | 7     | 6     | 4     | 4     | 4     | 4     | 4     | 4     | 3     |
| Lithuania                    | 24    | 21    | 20    | 23    | 20    | 18    | 16    | 16    | 15    |
| Luxembourg                   | 2     | 2     | 2     | 1     | 1     | 2     | 2     | 1     | 1     |
| Malta                        | 11    | 8     | 8     | 8     | 8     | 5     | 5     | 3     | 2     |
| Montenegro                   | 15    | 8     | 28    | 40    | 42    | 44    | 46    | 48    | 51    |
| Netherlands                  | 53    | 39    | 35    | 34    | 34    | 30    | 30    | 31    | 28    |
| Norway                       | 20    | 16    | 20    | 19    | 17    | 17    | 17    | 16    | 16    |
| Poland                       | 939   | 803   | 866   | 828   | 794   | 759   | 715   | 702   | 582   |
| Portugal                     | 112   | 77    | 68    | 62    | 57    | 51    | 46    | 47    | 47    |
| Republic of Moldova          | 8     | 10    | 10    | 9     | 8     | 10    | 9     | 9     | 9     |
| Romania                      | 525   | 447   | 354   | 324   | 260   | 227   | 183   | 157   | 108   |
| Russian Federation           | 2113  | 1992  | 1911  | 2077  | 2089  | 2064  | 2057  | 2027  | 2080  |
| Serbia                       | 468   | 426   | 392   | 442   | 408   | 427   | 333   | 405   | 408   |
| Slovakia                     | 70    | 64    | 69    | 68    | 58    | 53    | 45    | 68    | 27    |
| Slovenia                     | 15    | 12    | 11    | 13    | 12    | 14    | 10    | 6     | 5     |
| Spain                        | 391   | 292   | 250   | 287   | 286   | 226   | 250   | 267   | 218   |
| Sweden                       | 28    | 27    | 28    | 26    | 25    | 22    | 20    | 18    | 19    |
| Switzerland                  | 12    | 10    | 10    | 9     | 9     | 9     | 8     | 7     | 6     |
| Tajikistan                   | 13    | 13    | 13    | 14    | 15    | 16    | 17    | 18    | 18    |
| TFYR of Macedonia            | 101   | 96    | 91    | 102   | 97    | 83    | 83    | 76    | 59    |
| Turkey                       | 2558  | 2662  | 2557  | 2638  | 2703  | 1940  | 2149  | 1949  | 2251  |
| Turkmenistan                 | 13    | 12    | 12    | 12    | 12    | 12    | 12    | 12    | 12    |
| Ukraine                      | 1386  | 1290  | 1241  | 1346  | 1366  | 1449  | 922   | 854   | 778   |
| United Kingdom               | 529   | 432   | 450   | 415   | 459   | 396   | 322   | 253   | 179   |
| Uzbekistan                   | 93    | 84    | 84    | 75    | 66    | 56    | 47    | 38    | 29    |
| North Africa                 | 1229  | 1250  | 1271  | 1418  | 1410  | 1474  | 1514  | 1582  | 1602  |
| Asian areas (AST)            | 3674  | 3838  | 4002  | 4223  | 4338  | 4675  | 5016  | 5361  | 5720  |
| Baltic Sea                   | 116   | 111   | 106   | 80    | 70    | 71    | 71    | 8     | 8     |
| Black Sea                    | 38    | 37    | 37    | 40    | 35    | 35    | 35    | 36    | 36    |
| Mediterranean Sea            | 591   | 579   | 560   | 617   | 543   | 549   | 549   | 554   | 554   |
| North Sea                    | 246   | 239   | 215   | 155   | 136   | 138   | 138   | 26    | 26    |
| Remaining N-E Atlantic Ocean | 385   | 379   | 368   | 395   | 347   | 351   | 352   | 355   | 355   |
| Natural marine emissions     | 2386  | 2356  | 2314  | 2446  | 2368  | 2434  | 2250  | 2454  | 2390  |
| Volcanic emissions           | 973   | 950   | 1070  | 943   | 943   | 943   | 11823 | 2070  | 943   |
| TOTAL                        | 23007 | 22017 | 21698 | 22542 | 22032 | 21274 | 31610 | 21889 | 20840 |

| Area/Year                                                                                                                                                                                                   | 2000                                                                                                                                            | 2001                                                                                                                              | 2002                                                               | 2003                                                        | 2004                                                        | 2005                                                             | 2006                                                        | 200                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| Albania                                                                                                                                                                                                     | 18                                                                                                                                              | 19                                                                                                                                | 20                                                                 | 21                                                          | 25                                                          | 25                                                               | 24                                                          | 22                                               |
| Armenia                                                                                                                                                                                                     | 10                                                                                                                                              | 13                                                                                                                                | 13                                                                 | 15                                                          | 17                                                          | 19                                                               | 21                                                          | 24                                               |
| Austria                                                                                                                                                                                                     | 215                                                                                                                                             | 226                                                                                                                               | 232                                                                | 240                                                         | 237                                                         | 240                                                              | 226                                                         | 210                                              |
| Azerbaijan                                                                                                                                                                                                  | 47                                                                                                                                              | 56                                                                                                                                | 55                                                                 | 55                                                          | 57                                                          | 57                                                               | 61                                                          | 68                                               |
| Belarus                                                                                                                                                                                                     | 211                                                                                                                                             | 207                                                                                                                               | 203                                                                | 198                                                         | 194                                                         | 190                                                              | 186                                                         | 18                                               |
| Belgium                                                                                                                                                                                                     | 344                                                                                                                                             | 334                                                                                                                               | 322                                                                | 320                                                         | 332                                                         | 318                                                              | 304                                                         | 29:                                              |
| Bosnia and Herzegovina                                                                                                                                                                                      | 35                                                                                                                                              | 34                                                                                                                                | 34                                                                 | 34                                                          | 33                                                          | 33                                                               | 33                                                          | 33                                               |
| Bulgaria                                                                                                                                                                                                    | 147                                                                                                                                             | 151                                                                                                                               | 172                                                                | 177                                                         | 175                                                         | 183                                                              | 179                                                         | 16.                                              |
| Croatia                                                                                                                                                                                                     | 86                                                                                                                                              | 86                                                                                                                                | 88                                                                 | 88                                                          | 86                                                          | 84                                                               | 83                                                          | 80                                               |
| Cyprus                                                                                                                                                                                                      | 22                                                                                                                                              | 21                                                                                                                                | 21                                                                 | 22                                                          | 21                                                          | 22                                                               | 21                                                          | 2                                                |
| Czech Republic                                                                                                                                                                                              | 295                                                                                                                                             | 304                                                                                                                               | 291                                                                | 292                                                         | 290                                                         | 281                                                              | 276                                                         | 27                                               |
| Denmark                                                                                                                                                                                                     | 227                                                                                                                                             | 224                                                                                                                               | 221                                                                | 230                                                         | 214                                                         | 205                                                              | 205                                                         | 19                                               |
| Estonia                                                                                                                                                                                                     | 45                                                                                                                                              | 47                                                                                                                                | 47                                                                 | 48                                                          | 45                                                          | 42                                                               | 41                                                          | 4                                                |
| Finland                                                                                                                                                                                                     | 234                                                                                                                                             | 236                                                                                                                               | 236                                                                | 244                                                         | 233                                                         | 205                                                              | 221                                                         | 209                                              |
| France                                                                                                                                                                                                      | 1617                                                                                                                                            | 1580                                                                                                                              | 1543                                                               | 1498                                                        | 1463                                                        | 1417                                                             | 1334                                                        | 127                                              |
| Georgia                                                                                                                                                                                                     | 11                                                                                                                                              | 14                                                                                                                                | 15                                                                 | 16                                                          | 20                                                          | 26                                                               | 28                                                          | 3                                                |
| Germany                                                                                                                                                                                                     | 1929                                                                                                                                            | 1851                                                                                                                              | 1773                                                               | 1718                                                        | 1652                                                        | 1577                                                             | 1568                                                        | 1499                                             |
| Greece                                                                                                                                                                                                      | 388                                                                                                                                             | 415                                                                                                                               | 412                                                                | 422                                                         | 430                                                         | 440                                                              | 442                                                         | 442                                              |
| Hungary                                                                                                                                                                                                     | 183                                                                                                                                             | 183                                                                                                                               | 176                                                                | 180                                                         | 177                                                         | 174                                                              | 167                                                         | 16                                               |
| Iceland                                                                                                                                                                                                     | 28                                                                                                                                              | 27                                                                                                                                | 28                                                                 | 28                                                          | 28                                                          | 26                                                               | 26                                                          | 2                                                |
| Ireland                                                                                                                                                                                                     | 175                                                                                                                                             | 174                                                                                                                               | 166                                                                | 166                                                         | 167                                                         | 169                                                              | 164                                                         | 16                                               |
| Italy                                                                                                                                                                                                       | 1489                                                                                                                                            | 1457                                                                                                                              | 1399                                                               | 1383                                                        | 1338                                                        | 1281                                                             | 1211                                                        | 116                                              |
| Kazakhstan                                                                                                                                                                                                  | 366                                                                                                                                             | 436                                                                                                                               | 448                                                                | 470                                                         | 515                                                         | 548                                                              | 581                                                         | 612                                              |
| Kyrgyzstan                                                                                                                                                                                                  | 21                                                                                                                                              | 22                                                                                                                                | 23                                                                 | 24                                                          | 25                                                          | 26                                                               | 30                                                          | 33                                               |
| Latvia                                                                                                                                                                                                      | 41                                                                                                                                              | 44                                                                                                                                | 42                                                                 | 44                                                          | 43                                                          | 42                                                               | 43                                                          | 4                                                |
| Lithuania                                                                                                                                                                                                   | 53                                                                                                                                              | 54                                                                                                                                | 55                                                                 | 55                                                          | 56                                                          | 59                                                               | 62                                                          | 6                                                |
| Luxembourg                                                                                                                                                                                                  | 41                                                                                                                                              | 42                                                                                                                                | 42                                                                 | 45                                                          | 53                                                          | 55                                                               | 48                                                          | 4                                                |
| Malta                                                                                                                                                                                                       | 9                                                                                                                                               | 9                                                                                                                                 | 9                                                                  | 10                                                          | 10                                                          | 9                                                                | 9                                                           | 9                                                |
| Montenegro                                                                                                                                                                                                  | 9                                                                                                                                               | 7                                                                                                                                 | 7                                                                  | 7                                                           | 8                                                           | 8                                                                | 8                                                           | 1                                                |
| Netherlands                                                                                                                                                                                                 | 464                                                                                                                                             | 452                                                                                                                               | 435                                                                | 430                                                         | 415                                                         | 406                                                              | 398                                                         | 380                                              |
| Norway                                                                                                                                                                                                      | 209                                                                                                                                             | 207                                                                                                                               | 202                                                                | 202                                                         | 203                                                         | 204                                                              | 200                                                         | 204                                              |
| Poland                                                                                                                                                                                                      | 846                                                                                                                                             | 821                                                                                                                               | 790                                                                | 809                                                         | 831                                                         | 859                                                              | 877                                                         | 87                                               |
| Portugal                                                                                                                                                                                                    | 289                                                                                                                                             | 287                                                                                                                               | 292                                                                | 269                                                         | 272                                                         | 279                                                              | 256                                                         | 24                                               |
| Republic of Moldova                                                                                                                                                                                         | 13                                                                                                                                              | 16                                                                                                                                | 15                                                                 | 20                                                          | 20                                                          | 21                                                               | 19                                                          | 2                                                |
| Romania                                                                                                                                                                                                     | 263                                                                                                                                             | 271                                                                                                                               | 277                                                                | 288                                                         | 294                                                         | 318                                                              | 314                                                         | 29                                               |
| Russian Federation                                                                                                                                                                                          | 3349                                                                                                                                            | 3442                                                                                                                              | 3536                                                               | 3786                                                        | 3769                                                        | 3731                                                             | 4260                                                        | 428                                              |
| Serbia                                                                                                                                                                                                      | 144                                                                                                                                             | 149                                                                                                                               | 158                                                                | 161                                                         | 180                                                         | 167                                                              | 169                                                         | 170                                              |
| Slovakia                                                                                                                                                                                                    | 113                                                                                                                                             | 114                                                                                                                               | 108                                                                | 104                                                         | 107                                                         | 112                                                              | 104                                                         | 10.                                              |
| Slovenia                                                                                                                                                                                                    | 60                                                                                                                                              | 60                                                                                                                                | 59                                                                 | 57                                                          | 55                                                          | 56                                                               | 57                                                          | 5                                                |
| Spain                                                                                                                                                                                                       | 1388                                                                                                                                            | 1347                                                                                                                              | 1382                                                               | 1373                                                        | 1406                                                        | 1387                                                             | 1343                                                        | 133                                              |
| Sweden                                                                                                                                                                                                      | 216                                                                                                                                             | 206                                                                                                                               | 198                                                                | 194                                                         | 189                                                         | 184                                                              | 180                                                         | 17                                               |
| Switzerland                                                                                                                                                                                                 | 105                                                                                                                                             | 101                                                                                                                               | 96                                                                 | 93                                                          | 92                                                          | 91                                                               | 88                                                          | 8                                                |
| Tajikistan                                                                                                                                                                                                  | 5                                                                                                                                               | 5                                                                                                                                 | 5                                                                  | 5                                                           | 6                                                           | 6                                                                | 7                                                           |                                                  |
| TFYR of Macedonia                                                                                                                                                                                           | 43                                                                                                                                              | 40                                                                                                                                | 38                                                                 | 34                                                          | 36                                                          | 37                                                               | 37                                                          | 4                                                |
| Turkey                                                                                                                                                                                                      | 585                                                                                                                                             | 568                                                                                                                               | 546                                                                | 528                                                         | 621                                                         | 6.59                                                             | 677                                                         | 73                                               |
| Turkmenisten                                                                                                                                                                                                | 61                                                                                                                                              | 62                                                                                                                                | 65                                                                 | 72                                                          | 73                                                          | 75                                                               | 77                                                          | 8                                                |
| Turkincinstan                                                                                                                                                                                               | 010                                                                                                                                             | 835                                                                                                                               | 851                                                                | 954                                                         | 874                                                         | 883                                                              | 892                                                         | 91                                               |
| Ukraine                                                                                                                                                                                                     | 020                                                                                                                                             |                                                                                                                                   | 1874                                                               | 1830                                                        | 1774                                                        | 1763                                                             | 1693                                                        | 162                                              |
| Ukraine<br>United Kingdom                                                                                                                                                                                   | 2026                                                                                                                                            | 1978                                                                                                                              | 10/7                                                               |                                                             |                                                             |                                                                  | 201                                                         | 20                                               |
| Ukraine<br>United Kingdom<br>Uzbekistan                                                                                                                                                                     | 2026<br>223                                                                                                                                     | <u>1978</u><br>222                                                                                                                | 225                                                                | 221                                                         | 210                                                         | 200                                                              | 204                                                         | 20                                               |
| Ukraine<br>United Kingdom<br>Uzbekistan<br>North Africa                                                                                                                                                     | 2026<br>223<br>803                                                                                                                              | 1978<br>222<br>827                                                                                                                | 225<br>852                                                         | 221<br>876                                                  | 210<br>901                                                  | 200<br>926                                                       | 967                                                         | 100                                              |
| Ukraine<br>United Kingdom<br>Uzbekistan<br>North Africa<br>Asian areas (AST)                                                                                                                                | 828           2026           223           803           3029                                                                                   | 1978<br>222<br>827<br>3193                                                                                                        | 225<br>852<br>3358                                                 | 221<br>876<br>3522                                          | 210<br>901<br>3686                                          | 200<br>926<br>3850                                               | 204<br>967<br>3975                                          | 100                                              |
| Ukraine Ukraine United Kingdom Uzbekistan North Africa Asian areas (AST) Baltic Sea                                                                                                                         | 828<br>2026<br>223<br>803<br>3029<br>351                                                                                                        | 1978<br>222<br>827<br>3193<br>358                                                                                                 | 225<br>852<br>3358<br>365                                          | 221<br>876<br>3522<br>371                                   | 210<br>901<br>3686<br>378                                   | 200<br>926<br>3850<br>384                                        | 204<br>967<br>3975<br>375                                   | 100<br>410<br>34                                 |
| Ukraine Ukraine United Kingdom Uzbekistan North Africa Asian areas (AST) Baltic Sea Black Sea                                                                                                               | 828<br>2026<br>223<br>803<br>3029<br>351<br>96                                                                                                  | 1978<br>222<br>827<br>3193<br>358<br>97                                                                                           | 225<br>852<br>3358<br>365<br>99                                    | 221<br>876<br>3522<br>371                                   | 210<br>901<br>3686<br>378<br>103                            | 200<br>926<br>3850<br>384<br>105                                 | 204<br>967<br>3975<br>375<br>110                            |                                                  |
| Ukraine Ukraine United Kingdom Uzbekistan North Africa Asian areas (AST) Baltic Sea Black Sea Mediterranean Sea                                                                                             | 828<br>2026<br>223<br>803<br>3029<br>351<br>96<br>1270                                                                                          | 1978<br>222<br>827<br>3193<br>358<br>97<br>1307                                                                                   | 225<br>852<br>3358<br>365<br>99                                    | 221<br>876<br>3522<br>371<br>101                            | 210<br>901<br>3686<br>378<br>103<br>1420                    | 200<br>926<br>3850<br>384<br>105<br>1457                         | 204<br>967<br>3975<br>375<br>110<br>1552                    | 100<br>410<br>348<br>100                         |
| Ukraine Ukraine United Kingdom Uzbekistan North Africa Asian areas (AST) Baltic Sea Black Sea Mediterranean Sea North Sea                                                                                   | 828           2026           223           803           3029           351           96           1270           711                           | 1978<br>222<br>827<br>3193<br>358<br>97<br>1307<br>726                                                                            | 225<br>852<br>3358<br>365<br>99<br>1345<br>742                     | 221<br>876<br>3522<br>371<br>101<br>1382<br>757             | 210<br>901<br>3686<br>378<br>103<br>1420<br>773             | 200<br>926<br>3850<br>384<br>105<br>1457<br>789                  | 204<br>967<br>3975<br>375<br>110<br>1552<br>828             | 1009<br>4100<br>348<br>100<br>1400<br>765        |
| Ukraine Ukraine Ukraine Ukraine Uzbekistan Vorth Africa Asian areas (AST) Baltic Sea Black Sea Mediterranean Sea North Sea Remaining N-E Atlantic Ocean                                                     | 828           2026           223           803           3029           351           96           1270           711           772             | 1978<br>222<br>827<br>3193<br>358<br>97<br>1307<br>726<br>790                                                                     | 225<br>852<br>3358<br>365<br>99<br>1345<br>742<br>807              | 221<br>876<br>3522<br>371<br>101<br>1382<br>757<br>824      | 210<br>901<br>3686<br>378<br>103<br>1420<br>773<br>842      | 200<br>926<br>3850<br>384<br>105<br>1457<br>789<br>859           | 204<br>967<br>3975<br>375<br>110<br>1552<br>828<br>903      | 1009<br>4100<br>344<br>100<br>1400<br>766<br>834 |
| Ukraine Ukraine Ukraine Ukraine Ukraine Uzbekistan Vorth Africa Asian areas (AST) Baltic Sea Black Sea Mediterranean Sea North Sea Remaining N-E Atlantic Ocean Natural marine emissions                    | 828           2026           223           803           3029           351           96           1270           711           772             | 1978           222           827           3193           358           97           1307           726           790             | 225<br>852<br>3358<br>365<br>99<br>1345<br>742<br>807              | 221<br>876<br>3522<br>371<br>101<br>1382<br>757<br>824      | 210<br>901<br>3686<br>378<br>103<br>1420<br>773<br>842      | 200<br>926<br>3850<br>384<br>105<br>1457<br>789<br>859<br>0      | 204<br>967<br>3975<br>375<br>110<br>1552<br>828<br>903      | 100<br>4100<br>34<br>100<br>1400<br>76<br>833    |
| Ukraine Ukraine Ukraine Ukraine Ukraine Uzbekistan Vorth Africa Asian areas (AST) Baltic Sea Black Sea Mediterranean Sea North Sea Remaining N-E Atlantic Ocean Natural marine emissions Volcanic emissions | 828           2026           223           803           3029           351           96           1270           711           772           0 | 1978           222           827           3193           358           97           1307           726           790           0 | 1874<br>225<br>852<br>3358<br>365<br>99<br>1345<br>742<br>807<br>0 | 221<br>876<br>3522<br>371<br>101<br>1382<br>757<br>824<br>0 | 210<br>901<br>3686<br>378<br>103<br>1420<br>773<br>842<br>0 | 200<br>926<br>3850<br>384<br>105<br>1457<br>789<br>859<br>0<br>0 | 204<br>967<br>3975<br>375<br>110<br>1552<br>828<br>903<br>0 | 100<br>410<br>343<br>100<br>140<br>76<br>833     |

Table B:3: National total emission trends of nitrogen oxides (2000-2007), as used for modelling at the MSC-W (Gg of  $NO_2$  per year).

Table B:4: National total emission trends of nitrogen oxides (2008-2016), as used for modelling at the MSC-W (Gg of  $NO_2$  per year).

| Area/Year                     | 2008  | 2009  | 2010  | 2011  | 2012  | 2013       | 2014  | 2015       | 2016  |
|-------------------------------|-------|-------|-------|-------|-------|------------|-------|------------|-------|
| Albania                       | 22    | 22    | 22    | 23    | 23    | 23         | 24    | 24         | 25    |
| Armenia                       | 23    | 23    | 23    | 23    | 22    | 22         | 22    | 20         | 18    |
| Austria                       | 200   | 185   | 185   | 176   | 171   | 172        | 162   | 159        | 154   |
| Azerbaijan                    | 84    | 69    | 74    | 80    | 87    | 93         | 95    | 87         | 80    |
| Belarus                       | 189   | 189   | 170   | 171   | 175   | 167        | 159   | 145        | 143   |
| Belgium                       | 269   | 241   | 246   | 228   | 215   | 212        | 202   | 202        | 193   |
| Bosnia and Herzegovina        | 33    | 33    | 32    | 32    | 32    | 32         | 31    | 31         | 31    |
| Bulgaria                      | 164   | 148   | 138   | 158   | 141   | 126        | 132   | 132        | 125   |
| Croatia                       | 81    | 75    | 67    | 64    | 58    | 57         | 53    | 54         | 52    |
| Cyprus                        | 20    | 20    | 19    | 22    | 22    | 17         | 18    | 15         | 15    |
| Czech Republic                | 254   | 235   | 226   | 213   | 199   | 185        | 179   | 174        | 165   |
| Denmark                       | 174   | 155   | 150   | 141   | 130   | 125        | 116   | 115        | 115   |
| Estonia                       | 42    | 37    | 43    | 41    | 38    | 35         | 35    | 32         | 31    |
| Finland                       | 191   | 171   | 184   | 169   | 160   | 156        | 148   | 134        | 131   |
| France                        | 1178  | 1092  | 1078  | 1015  | 987   | 970        | 900   | 875        | 842   |
| Georgia                       | 32    | 31    | 33    | 37    | 38    | 33         | 35    | 37         | 38    |
| Germany                       | 1427  | 1330  | 1357  | 1342  | 1304  | 1304       | 1265  | 1241       | 1218  |
| Greece                        | 420   | 413   | 343   | 314   | 275   | 261        | 255   | 253        | 244   |
| Hungary                       | 158   | 147   | 142   | 134   | 125   | 123        | 122   | 124        | 117   |
| Iceland                       | 26    | 26    | 24    | 22    | 22    | 22         | 21    | 22         | 24    |
| Ireland                       | 146   | 123   | 117   | 105   | 108   | 109        | 108   | 111        | 112   |
| Italy                         | 1075  | 990   | 972   | 934   | 876   | 818        | 804   | 783        | 761   |
| Kazakhstan                    | 625   | 622   | 642   | 648   | 727   | 738        | 737   | 773        | 760   |
| Kyrgyzstan                    | 36    | 39    | 43    | 46    | 49    | 52         | 55    | 59         | 62    |
| Latvia                        | 39    | 37    | 39    | 36    | 36    | 36         | 36    | 36         | 35    |
| Lithuania                     | 60    | 53    | 56    | 53    | 55    | 54         | 54    | 54         | 54    |
| Luxembourg                    | 38    | 34    | 33    | 33    | 31    | 27         | 25    | 22         | 20    |
| Malta                         | 9     | 9     | 8     | 8     | 9     | 7          | 6     | 5          | 5     |
| Montenegro                    | 9     | 7     | 10    | 13    | 13    | 13         | 13    | 14         | 14    |
| Netherlands                   | 371   | 337   | 334   | 318   | 302   | 292        | 270   | 268        | 254   |
| Norway                        | 194   | 185   | 189   | 185   | 180   | 169        | 160   | 154        | 151   |
| Poland                        | 842   | 831   | 858   | 841   | 810   | 774        | 726   | 705        | 726   |
| Portugal                      | 227   | 217   | 202   | 185   | 172   | 169        | 166   | 168        | 161   |
| Republic of Moldova           | 22    | 22    | 25    | 25    | 24    | 24         | 26    | 26         | 27    |
| Romania                       | 292   | 248   | 234   | 244   | 241   | 224        | 217   | 214        | 211   |
| Russian Federation            | 4347  | 4255  | 2897  | 2999  | 3094  | 3146       | 3167  | 3125       | 3154  |
| Serbia                        | 165   | 157   | 144   | 159   | 149   | 149        | 126   | 142        | 145   |
| Slovakia                      | 104   | 94    | 94    | 85    | 83    | 81         | 80    | 75         | 67    |
| Slovenia                      | 59    | 51    | 50    | 49    | 47    | 45         | 40    | 36         | 37    |
| Spain                         | 1132  | 1010  | 952   | 937   | 902   | 789        | 801   | 805        | 765   |
| Sweden                        | 165   | 154   | 157   | 150   | 143   | 140        | 139   | 134        | 131   |
| Switzerland                   | 84    | 79    | 77    | 73    | 73    | 72         | 69    | 65         | 63    |
| Tajikistan                    | 8     | 8     | 8     | 8     | 8     | 9          | 9     | 9          | 10    |
| TFYR of Macedonia             | 39    | 39    | 38    | 41    | 38    | 38         | 29    | 28         | 22    |
| Turkey                        | 722   | 704   | 698   | 737   | 649   | 679        | 680   | 691        | 703   |
| Turkmenistan                  | 87    | 85    | 83    | 86    | 88    | 90         | 92    | 94         | 97    |
| Ukraine                       | 893   | 731   | 716   | 704   | 693   | 682        | 671   | 659        | 648   |
| United Kingdom                | 1451  | 1265  | 1242  | 1154  | 11/8  | 1118       | 1045  | 1010       | 916   |
| Uzbekistan                    | 199   | 195   | 194   | 191   | 188   | 185        | 182   | 1/9        | 1//   |
| North Alfica                  | 1051  | 1092  | 1134  | 1230  | 1220  | 12/5       | 1309  | 1309       | 1385  |
| Asian areas (AS1)             | 4225  | 4349  | 44/4  | 4920  | 215   | 34/3       | 38/2  | 02//       | 0090  |
| Dattic Sea                    | 340   | 333   | 333   | 53/   | 315   | 306        | 305   | 257        | 25/   |
| Maditamanaan C                | 1249  | 1202  | 90    | 91    | 83    | 83<br>1079 | 83    | 80<br>1115 | 1115  |
| North See                     | 1248  | 1203  | 1108  | 1188  | 622   | 10/8       | 10/0  | 1115       | 5/5   |
| Domaining N E Atlantia Occorr | 762   | 741   | 725   | 0//   | 6033  | 014        | 645   | 202        | 202   |
| Notural marine amigging       | /02   | /41   | 125   | /33   | 08/   | 000        | 000   | 089        | 089   |
| Volcopic emissions            | 0     |       |       | 0     | 0     | 0          | 0     | 0          |       |
|                               |       |       |       |       |       | 0          | 0     | 0          |       |
| TOTAL                         | 26849 | 25718 | 24263 | 24635 | 24325 | 24362      | 24433 | 24679      | 24841 |

| Table B:5: National total emission trends of ammonia (2000-2007), as used for modelling at the N | MSC- |
|--------------------------------------------------------------------------------------------------|------|
| W (Gg of $NH_3$ per year).                                                                       |      |

| Almania         29         29         28         28         27         27         26         24           Armenia         11         12         12         15         16         16         17           Austria         66         66         65         65         65         65         67           Austria         50         15         154         58         61         63         66         66           Belarus         150         149         148         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         144         145         141         115         115         115         115         115         115         115         115         115         115         115         116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Area/Year                    | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------|------|------|------|------|------|------|------|
| Amenia         11         12         12         15         16         16         16           Austria         66         66         65         65         65         67           Azerbaijan         50         51         54         58         61         63         66           Belarus         150         149         148         147         146         145         144         144           Belgium         92         88         85         81         77         75         71           Bosnia and Herzegovina         17         17         17         18         18         18         18         18           Croatia         41         44         42         43         46         42         41         41           Cyrotis         6         7         7         7         6         6         7         73         53         53         55         55         55         55         55         55         55         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Albania                      | 29   | 29   | 28   | 28   | 27   | 27   | 26   | 24   |
| Austria666666666565656667Azerbaijan5051545861636666Belarus150149148147146144144Belgium9288858177757575Dosnia and Herzegovina1717171818181818Bulgaria5451505253525152Croatia4144424346424141Cypus67777666Cypus67777666Cypus67777666Denmark990101111111111France662657643635629625615622Georgia343435373635555Hengary93929294908686Lealand15150160170178194202Karzkhstan150150160170178194202Karzkhstan150150160170178195194Lealand17171677666Mala <td>Armenia</td> <td>11</td> <td>12</td> <td>12</td> <td>15</td> <td>15</td> <td>16</td> <td>16</td> <td>17</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Armenia                      | 11   | 12   | 12   | 15   | 15   | 16   | 16   | 17   |
| Azerbaigan         50         51         54         58         61         63         66         66           Belarus         150         149         148         147         146         145         144         144           Belgium         92         88         85         81         77         75         71           Bosnia and Herzegovina         17         17         17         18         18         18         18         19           Bulgaria         44         44         42         43         46         42         441         41           Cyrots         6         7         7         7         6         6         7           Czech Republic         87         88         86         84         80         78         78         79           Denmark         97         95         94         93         92         89         85         84           Estonia         91         10         101         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111         111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Austria                      | 66   | 66   | 66   | 65   | 65   | 65   | 65   | 67   |
| Belary         150         149         148         147         146         145         144         144           Belgium         92         88         85         81         77         75         75         71           Bosnia and Herzegovina         17         17         18         18         18         18         18         18         18         18         18         18         18         18         18         18         14         144         42         43         46         42         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         44         43         35         36         37         36         35         30         35         36         37         36         35         36         37         36         35         36         37         36         35         36         36         37         36         35         36         36         36         36         36         37         36         85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Azerbaijan                   | 50   | 51   | 54   | 58   | 61   | 63   | 66   | 66   |
| Belgium         92         88         85         81         77         75         75         71           Bosnia and Herzegovina         17         17         17         18         18         18         18         19           Bulgaria         54         51         50         52         53         52         55         15         52           Croatia         41         44         42         43         46         42         41         41           Cypus         6         7         7         7         7         6         6         7           Czech Republic         87         88         86         84         80         78         78         79           Denmark         97         95         94         93         92         89         85         84           Estonia         91         10         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Belarus                      | 150  | 149  | 148  | 147  | 146  | 145  | 144  | 144  |
| Bosnia and Herzegovina         17         17         17         18         18         18         18         19           Bulgaria         54         51         50         52         53         52         51         52           Croatia         41         44         42         43         46         42         41         41           Cypus         6         7         7         7         6         6         7           Czech Republic         87         88         86         84         80         78         78         78           Denmark         97         95         94         93         92         89         85         84           Estonia         910         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         113         112         100         16         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Belgium                      | 92   | 88   | 85   | 81   | 77   | 75   | 75   | 71   |
| Bulgaria         54         51         50         52         53         52         51         52           Croatia         41         44         42         43         46         42         41         41           Cyprus         6         7         7         7         7         6         6         7           Cxch Republic         87         88         86         84         80         78         78         79           Denmark         97         95         94         93         92         89         88         84           Estonia         9         10         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bosnia and Herzegovina       | 17   | 17   | 17   | 18   | 18   | 18   | 18   | 19   |
| $\begin{array}{c cccc} \hline Croatia & 41 & 44 & 42 & 43 & 46 & 42 & 41 & 41 \\ Cyprus & 6 & 7 & 7 & 7 & 6 & 6 & 7 \\ Czech Republic & 87 & 88 & 88 & 88 & 80 & 78 & 78 & 79 \\ \hline Denmark & 97 & 95 & 94 & 93 & 92 & 89 & 85 & 84 \\ \hline Estonia & 9 & 10 & 10 & 11 & 11 & 11 & 11 & 11 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bulgaria                     | 54   | 51   | 50   | 52   | 53   | 52   | 51   | 52   |
| Cyprus677776667Czech Republic87888684807879Denmark9795949392888584Estonia910101111111111Finland3434353636373635France662657643635629625615622Georgia3434353736353035Germany647653640637626625626628Greece6664656467656365Iceland115115114113113112109Italy455458446644440424419422Kazakhstan150150150150150150150160Italy1415141514151616Lithuania3534363737383838Lucembourg777767666Malta1222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Croatia                      | 41   | 44   | 42   | 43   | 46   | 42   | 41   | 41   |
| $\begin{array}{c cccc} \hline Cach Republic \\ \hline Cach Republic \\ \hline Problem rark \\ P$ | Cyprus                       | 6    | 7    | 7    | 7    | 7    | 6    | 6    | 7    |
| Denmark         97         95         94         93         92         89         85         84           Estonia         9         10         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         110         11         110         11         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Czech Republic               | 87   | 88   | 86   | 84   | 80   | 78   | 78   | 79   |
| Estonia         9         10         10         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11 <th< td=""><td>Denmark</td><td>97</td><td>95</td><td>94</td><td>93</td><td>92</td><td>89</td><td>85</td><td>84</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Denmark                      | 97   | 95   | 94   | 93   | 92   | 89   | 85   | 84   |
| Finland         34         34         35         36         36         37         36         35           France         662         657         643         635         629         625         615         622           Georgia         34         34         35         37         36         35         30         35           Germany         647         653         640         637         626         625         626         628           Hungary         93         92         94         90         86         86         86           Iceland         15         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estonia                      | 9    | 10   | 10   | 11   | 11   | 11   | 11   | 11   |
| France         662         657         643         635         629         625         615         622           Georgia         34         34         35         37         36         35         30         35           Gernany         647         653         640         637         626         625         626         628           Greece         66         64         65         64         67         65         63         65           Hugary         93         92         92         94         90         86         86         86           Celand         15         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Finland                      | 34   | 34   | 35   | 36   | 36   | 37   | 36   | 35   |
| Georgia         134         134         135         137         136         135         30         135           Germany         647         653         640         637         626         625         626         628           Greece         66         64         65         64         67         65         63         65           Integraty         93         92         92         94         90         86         86         86           Iceland         115         115         114         113         112         109           Italy         455         458         446         444         404         424         419         422           Kazakhstan         150         160         170         178         195         194         200           Latvia         14         15         14         15         14         15         16         116           Lithuania         35         34         36         37         37         38         38         38           Latvia         14         15         14         15         14         15         16         15           Latv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | France                       | 662  | 657  | 643  | 635  | 629  | 625  | 615  | 622  |
| Germany647653640637626625626628Greece6664656467656365Hungary9392929490868686Iceland1555555555Ireland115115114113113112109Italy455458446444440424419420Kazakhstan150150150170178195194200Kyrgyzstan2626272727282929Latvia14151415141516Lithuania35343637373838Luxembourg7776766Moltanegro6566543Netherlands175169162158157153156Norway2828293030303029Polandi319323322304292300321320Portugal78747116564636161Russian Federation96693590489890817872849Stovakia4041403936363433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Georgia                      | 34   | 34   | 35   | 37   | 36   | 35   | 30   | 35   |
| Greece         66         64         65         64         67         65         63         65           Hungary         93         92         92         94         90         86         86         86           Iceland         15         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Germany                      | 647  | 653  | 640  | 637  | 626  | 625  | 626  | 628  |
| Hungary         93         92         92         94         90         86         86         86           Iceland         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Greece                       | 66   | 64   | 65   | 64   | 67   | 65   | 63   | 65   |
| Integray         Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hungary                      | 93   | 92   | 92   | 94   | 90   | 86   | 86   | 86   |
| Ireland         115         115         114         113         113         112         109           Italy         455         458         446         444         440         424         419         422           Kazakhstan         150         150         160         170         178         195         194         200           Kyrgyzstan         226         26         27         27         22         22         22         22         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iceland                      | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
| Italy         455         458         446         444         440         424         419         422           Kazakhstan         150         150         160         170         178         195         194         200           Kyrgyzstan         26         26         27         27         28         29         29           Latvia         114         15         14         15         14         15         16           Lithuania         35         34         36         37         37         38         38           Luxembourg         7         7         7         6         7         6         6         6           Montenegro         6         5         6         6         5         4         3         3           Netherlands         175         169         162         158         157         153         156         152           Norway         28         28         29         30         30         30         30         20           Poland         319         323         322         304         292         300         31         320           Portugal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ireland                      | 115  | 115  | 115  | 114  | 113  | 113  | 112  | 109  |
| Kazakhstan150150160170170178195194200Kyrgyzstan2626272727282929Latvia14151415141516Lithuania3534363737383838Luxembourg77767666Malta222222222Montenegro65665433Netherlands175169162158157153156152Norway2828293030303029Poland319323322304292300321320Portugal7874716564636162Republic of Moldova2324252423242419Romania168164172174188206205201Russian Federation96693590489900817872849Slovakia4041403936363433Slovakia2020212019191920Spain540528521542550490499Sweden6059595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Italy                        | 455  | 458  | 446  | 444  | 440  | 424  | 419  | 422  |
| Kyrgyzstan         26         26         27         27         28         29         29           Latvia         14         15         14         15         14         15         14         15         16           Litkuania         35         34         36         37         37         38         38         38           Luxembourg         7         7         7         6         7         6         6         6           Malta         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Kazakhstan                   | 150  | 150  | 160  | 170  | 178  | 195  | 194  | 200  |
| DescriptionDescriptionDescriptionDescriptionDescriptionDescriptionLatvia1415141514151516Lithuania3534363737383838Luxembourg77767666Malta2222222222Montenegro65665433Netherlands175169162158157153156152Norway2828293030303029Poland319323322304292300321320Portugal7874716564636162Republic of Moldova2324252423242419Romania168164172174188206205201Russian Federation966935904898900817872849Slovakia4041403936363433Slovenia2020212019191920Spain540528551542532500490499Switzerland626160595959505506552551564<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kyrgyzstan                   | 26   | 26   | 27   | 27   | 27   | 28   | 29   | 29   |
| Lithuania         15         17         17         17         17         17         17         18         18         38         38           Luxembourg         7         7         7         7         6         7         6         6         6           Matta         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latvia                       | 14   | 15   | 14   | 15   | 14   | 15   | 15   | 16   |
| Luxembourg7776666Malta222222222Montenegro65665433Netherlands175169162158157153156152Norway2828293030303029Poland319323322304292300321320Portugal7874716564636162Republic of Moldova2324252423242419Romania168164172174188206205201Russian Federation966935904898900817872849Serbia7775807582827981Slovakia4041403936363433Slovakia2020212019191920Spain540528521542532500490499Sweden605959595950505506552551564589552Turkey559505506552551564569552551564589552Turkey559505506552<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lithuania                    | 35   | 34   | 36   | 37   | 37   | 38   | 38   | 38   |
| Maita2222222222Montenegro65665433Netherlands175169162158157153156152Norway2828293030303029Poland319323322304292300321320Portugal7874716564636162Republic of Moldova2324252423242419Romania168164172174188206205201Russian Federation966935904898900817872849Serbia7775807582827981Slovakia4041403936363433Slovakia2020212019191920Spain540528521542532500490499Sweden6059595959585757Switzerland626160595950506552551564589552Turkey559505506552551564589552552541543253253253253253253<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Luxembourg                   | 7    | 7    | 7    | 6    | 7    | 6    | 6    | 6    |
| Montenegro65665433Netherlands175169162158157153156152Norway282829303030303029Poland319323322304292300321320Portugal7874716564636162Republic of Moldova2324252423242419Romania168164172174188206205201Russian Federation966935904898900817872849Serbia7775807582827981Slovakia4041403936363433Slovakia2020212019191920Spain540528521542532500490499Sweden60595959585757Switzerland6261605959595852Turkey559505506552551564589552Turkey302292282273263253253252United Kingdom312304299292298290283275Balic Sea <t< td=""><td>Malta</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Malta                        | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Instruction1010160162158157153156152Norway282829303030303029Poland319323322304292300321320Portugal7874716564636162Republic of Moldova2324252423242419Romania168164172174188206205201Russian Federation966935904898900817872849Serbia7775807582827981Slovakia4041403936363433Slovenia2020212019191920Spain540528521542532500490499Sweden6059595959585757Switzerland62616059595958552Turkey5595055065525515646858Ukraine302292282273263253253252United Kingdom312304299292298290283279Uzbekistan151147148160169175183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Montenegro                   | 6    | 5    | 6    | 6    | 5    | 4    | 3    | 3    |
| Norway         28         28         29         30         30         30         30         29           Poland         319         323         322         304         292         300         321         320           Portugal         78         74         71         65         64         63         61         62           Republic of Moldova         23         24         25         24         23         24         24         19           Romania         168         164         172         174         188         206         205         201           Russian Federation         966         935         904         898         900         817         872         849           Serbia         77         75         80         75         82         82         79         81           Slovakia         40         41         40         39         36         36         34         33           Slovenia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Netherlands                  | 175  | 169  | 162  | 158  | 157  | 153  | 156  | 152  |
| Poland         319         322         304         292         300         321         320           Portugal         78         74         71         65         64         63         61         62           Republic of Moldova         23         24         25         24         23         24         25         24         23         24         25         21         300         321         320           Romania         168         164         172         174         188         206         205         201           Russian Federation         966         935         904         898         900         817         872         849           Serbia         77         75         80         75         82         82         79         81           Slovakia         40         41         40         39         36         36         34         33           Slovakia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Norway                       | 28   | 28   | 29   | 30   | 30   | 30   | 30   | 29   |
| Portugal         78         74         71         65         64         63         61         62           Republic of Moldova         23         24         25         24         23         24         24         19           Romania         168         164         172         174         188         206         205         201           Russian Federation         966         935         904         898         900         817         872         849           Serbia         77         75         80         75         82         82         79         81           Slovakia         40         41         40         39         36         36         34         33           Slovakia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         58         57         57           Switzerland         62         61         60         59         59         58         552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Poland                       | 319  | 323  | 322  | 304  | 292  | 300  | 321  | 320  |
| Republic of Moldova         23         24         25         24         23         24         24         19           Romania         168         164         172         174         188         206         205         201           Russian Federation         966         935         904         898         900         817         872         849           Serbia         77         75         80         75         82         82         79         81           Slovakia         40         41         40         39         36         36         34         33           Slovakia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         58         57         57           Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Portugal                     | 78   | 74   | 71   | 65   | 64   | 63   | 61   | 62   |
| Romania         Inference         Inference <thinference< th=""> <thinference< th=""> <thinf< td=""><td>Republic of Moldova</td><td>23</td><td>24</td><td>25</td><td>24</td><td>23</td><td>24</td><td>24</td><td>19</td></thinf<></thinference<></thinference<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Republic of Moldova          | 23   | 24   | 25   | 24   | 23   | 24   | 24   | 19   |
| Russian Federation         966         935         904         898         900         817         872         849           Serbia         77         75         80         75         82         82         79         81           Slovakia         40         41         40         39         36         36         34         33           Slovenia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         59         58         57         57           Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 </td <td>Romania</td> <td>168</td> <td>164</td> <td>172</td> <td>174</td> <td>188</td> <td>206</td> <td>205</td> <td>201</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Romania                      | 168  | 164  | 172  | 174  | 188  | 206  | 205  | 201  |
| Serbia         77         75         80         75         82         82         79         81           Slovakia         40         41         40         39         36         36         34         33           Slovenia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         59         58         57         57           Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Russian Federation           | 966  | 935  | 904  | 898  | 900  | 817  | 872  | 849  |
| Slovakia         40         41         40         39         36         36         34         33           Slovenia         20         20         21         20         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         59         58         57         57           Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Serbia                       | 77   | 75   | 80   | 75   | 82   | 82   | 79   | 81   |
| Slovenia         20         20         21         20         19         19         19         19         20           Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         59         58         57         57           Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Slovakia                     | 40   | 41   | 40   | 39   | 36   | 36   | 34   | 33   |
| Spain         540         528         521         542         532         500         490         499           Sweden         60         59         59         59         59         58         57         57           Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Slovenia                     | 20   | 20   | 21   | 20   | 19   | 19   | 19   | 20   |
| Sweden         60         59         59         59         59         58         57           Switzerland         62         61         60         59         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spain                        | 540  | 528  | 521  | 542  | 532  | 500  | 490  | 499  |
| Switzerland         62         61         60         59         59         60         60         61           Tajikistan         23         21         27         28         29         31         32         33           TFYR of Macedonia         13         13         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweden                       | 60   | 59   | 59   | 59   | 59   | 58   | 57   | 57   |
| Tajikistan2321272829313233TFYR of Macedonia131312121212121212Turkey559505506552551564589552Turkmenistan3950475563646968Ukraine302292282273263253253252United Kingdom312304299292298290283279Uzbekistan151147148160169175183186North Africa365380394409423438448458Asian areas (AST)23612416247125252580263526952755Baltic Sea000000000Mediterranean Sea00000000North Sea00000000Noth Sea00000000Noth Sea00000000North Sea00000000North Sea00000000North Sea00000000Natural marine emissions <t< td=""><td>Switzerland</td><td>62</td><td>61</td><td>60</td><td>59</td><td>59</td><td>60</td><td>60</td><td>61</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Switzerland                  | 62   | 61   | 60   | 59   | 59   | 60   | 60   | 61   |
| TFYR of Macedonia1313121212121212Turkey559505506552551564589552Turkmenistan3950475563646968Ukraine302292282273263253253252United Kingdom312304299292298290283279Uzbekistan151147148160169175183186North Africa365380394409423438448458Asian areas (AST)23612416247125252580263526952755Baltic Sea000000000Mediterranean Sea00000000North Sea00000000Natural marine emissions0000000Volcanic emissions00000000TOTAL97409688968297849841979999359960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tajikistan                   | 23   | 21   | 27   | 28   | 29   | 31   | 32   | 33   |
| Turkey559505506552551564589552Turkmenistan3950475563646968Ukraine302292282273263253253252United Kingdom312304299292298290283279Uzbekistan151147148160169175183186North Africa365380394409423438448458Asian areas (AST)23612416247125252580263526952755Baltic Sea000000000Mediterranean Sea00000000North Sea00000000Natural marine emissions0000000TOTAL97409688968297849841979999359960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TFYR of Macedonia            | 13   | 13   | 12   | 12   | 12   | 12   | 12   | 12   |
| Turkmenistan3950475563646968Ukraine302292282273263253253252United Kingdom312304299292298290283279Uzbekistan151147148160169175183186North Africa365380394409423438448458Asian areas (AST)23612416247125252580263526952755Baltic Sea000000000Mediterranean Sea00000000North Sea00000000Natural marine emissions0000000TOTAL97409688968297849841979999359960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turkey                       | 559  | 505  | 506  | 552  | 551  | 564  | 589  | 552  |
| Ukraine         302         292         282         273         263         253         252           United Kingdom         312         304         299         292         298         290         283         279           Uzbekistan         151         147         148         160         169         175         183         186           North Africa         365         380         394         409         423         438         448         458           Asian areas (AST)         2361         2416         2471         2525         2580         2635         2695         2755           Baltic Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Turkmenistan                 | 39   | 50   | 47   | 55   | 63   | 64   | 69   | 68   |
| United Kingdom         312         304         299         292         298         290         283         279           Uzbekistan         151         147         148         160         169         175         183         186           North Africa         365         380         394         409         423         438         448         458           Asian areas (AST)         2361         2416         2471         2525         2580         2635         2695         2755           Baltic Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ukraine                      | 302  | 292  | 282  | 273  | 263  | 253  | 253  | 252  |
| Uzbekistan         151         147         148         160         169         175         183         186           North Africa         365         380         394         409         423         438         448         458           Asian areas (AST)         2361         2416         2471         2525         2580         2635         2695         2755           Baltic Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>United Kingdom</td> <td>312</td> <td>304</td> <td>299</td> <td>292</td> <td>298</td> <td>290</td> <td>283</td> <td>279</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | United Kingdom               | 312  | 304  | 299  | 292  | 298  | 290  | 283  | 279  |
| North Africa         365         380         394         409         423         438         448         458           Asian areas (AST)         2361         2416         2471         2525         2580         2635         2695         2755           Baltic Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uzbekistan                   | 151  | 147  | 148  | 160  | 169  | 175  | 183  | 186  |
| Asian areas (AST)         2361         2416         2471         2525         2580         2635         2695         2755           Baltic Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>North Africa</td><td>365</td><td>380</td><td>394</td><td>409</td><td>423</td><td>438</td><td>448</td><td>458</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | North Africa                 | 365  | 380  | 394  | 409  | 423  | 438  | 448  | 458  |
| Baltic Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Asian areas (AST)            | 2361 | 2416 | 2471 | 2525 | 2580 | 2635 | 2695 | 2755 |
| Black Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Baltic Sea                   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mediterranean Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Black Sea                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| North Sea         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mediterranean Sea            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Remaining N-E Atlantic Ocean         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | North Sea                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Natural marine emissions         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>Remaining N-E Atlantic Ocean</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remaining N-E Atlantic Ocean | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Volcanic emissions         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Natural marine emissions     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| TOTAL 9740 9688 9682 9784 9841 9799 9935 9960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Volcanic emissions           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOTAL                        | 9740 | 9688 | 9682 | 9784 | 9841 | 9799 | 9935 | 9960 |

Table B:6: National total emission trends of ammonia (2008-2016), as used for modelling at the MSC-W (Gg of  $NH_3$  per year).

| Area/Year                    | 2008 | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  |
|------------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 24   | 24    | 24    | 24    | 24    | 25    | 25    | 25    | 24    |
| Armenia                      | 17   | 17    | 18    | 18    | 18    | 18    | 19    | 19    | 19    |
| Austria                      | 66   | 67    | 67    | 66    | 66    | 66    | 67    | 67    | 68    |
| Azerbaijan                   | 72   | 71    | 70    | 69    | 71    | 73    | 75    | 77    | 74    |
| Belarus                      | 147  | 150   | 151   | 154   | 157   | 149   | 141   | 143   | 136   |
| Belgium                      | 70   | 71    | 71    | 70    | 70    | 71    | 68    | 68    | 68    |
| Bosnia and Herzegovina       | 19   | 19    | 19    | 19    | 19    | 20    | 20    | 20    | 21    |
| Bulgaria                     | 49   | 46    | 47    | 45    | 45    | 46    | 49    | 50    | 50    |
| Croatia                      | 38   | 38    | 38    | 39    | 38    | 34    | 32    | 35    | 35    |
| Cyprus                       | 6    | 6     | 6     | 6     | 6     | 5     | 5     | 5     | 6     |
| Czech Republic               | 78   | 73    | 72    | 71    | 70    | 72    | 72    | 73    | 73    |
| Denmark                      | 83   | 79    | 80    | 78    | 76    | 74    | 74    | 74    | 75    |
| Estonia                      | 12   | 11    | 11    | 11    | 12    | 12    | 12    | 13    | 12    |
| Finland                      | 34   | 35    | 35    | 34    | 33    | 33    | 33    | 31    | 31    |
| France                       | 630  | 621   | 625   | 615   | 616   | 615   | 621   | 628   | 630   |
| Georgia                      | 36   | 36    | 36    | 37    | 39    | 44    | 37    | 37    | 36    |
| Germany                      | 633  | 646   | 626   | 656   | 644   | 660   | 662   | 670   | 663   |
| Greece                       | 62   | 60    | 64    | 63    | 62    | 62    | 61    | 60    | 60    |
| Hungary                      | 79   | 77    | 78    | 79    | 79    | 82    | 82    | 87    | 87    |
| Iceland                      | 5    | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5     |
| Ireland                      | 110  | 110   | 108   | 104   | 106   | 108   | 108   | 111   | 117   |
| Italy                        | 412  | 398   | 387   | 387   | 396   | 378   | 367   | 368   | 382   |
| Kazakhstan                   | 205  | 211   | 216   | 207   | 211   | 213   | 222   | 229   | 238   |
| Kyrgyzstan                   | 30   | 31    | 31    | 32    | 33    | 34    | 34    | 35    | 36    |
| Latvia                       | 15   | 16    | 15    | 15    | 16    | 16    | 17    | 16    | 16    |
| Lithuania                    | 36   | 37    | 37    | 36    | 35    | 35    | 35    | 35    | 34    |
| Luxembourg                   | 6    | 6     | 6     | 6     | 6     | 6     | 6     | 6     | 6     |
| Malta                        | 2    | 2     | 2     | 1     | 2     | 2     | 2     | 1     | 1     |
| Montenegro                   | 3    | 3     | 3     | 3     | 3     | 3     | 2     | 2     | 2     |
| Netherlands                  | 139  | 136   | 133   | 129   | 123   | 122   | 125   | 126   | 127   |
| Norway                       | 29   | 29    | 29    | 28    | 28    | 28    | 29    | 28    | 28    |
| Poland                       | 306  | 292   | 285   | 285   | 275   | 274   | 270   | 267   | 267   |
| Portugal                     | 60   | 58    | 57    | 58    | 56    | 54    | 56    | 57    | 56    |
| Republic of Moldova          | 19   | 21    | 22    | 21    | 20    | 19    | 23    | 23    | 23    |
| Romania                      | 198  | 191   | 175   | 173   | 172   | 172   | 169   | 171   | 167   |
| Russian Federation           | 841  | 1066  | 1088  | 1108  | 1127  | 1130  | 1145  | 1178  | 1196  |
| Serbia                       | 72   | 77    | 68    | 70    | 75    | 71    | 65    | 65    | 65    |
| Slovakia                     | 31   | 31    | 31    | 30    | 31    | 30    | 31    | 31    | 30    |
| Slovenia                     | 19   | 19    | 19    | 18    | 18    | 18    | 18    | 18    | 18    |
| Spain                        | 462  | 467   | 456   | 446   | 439   | 443   | 464   | 492   | 492   |
| Sweden                       | 57   | 54    | 55    | 54    | 53    | 54    | 54    | 54    | 53    |
| Switzerland                  | 61   | 60    | 60    | 59    | 58    | 58    | 58    | 57    | 57    |
| Tajikistan                   | 37   | 39    | 40    | 42    | 44    | 46    | 47    | 49    | 51    |
| TFYR of Macedonia            | 12   | 11    | 11    | 12    | 11    | 11    | 11    | 11    | 11    |
| Turkey                       | 519  | 529   | 547   | 567   | 628   | 657   | 667   | 650   | 713   |
| Turkmenistan                 | 73   | 74    | 76    | 80    | 84    | 87    | 91    | 95    | 98    |
| Ukraine                      | 252  | 252   | 251   | 256   | 261   | 266   | 271   | 276   | 281   |
| United Kingdom               | 263  | 265   | 270   | 271   | 268   | 264   | 276   | 280   | 289   |
| Uzbekistan                   | 193  | 203   | 212   | 218   | 224   | 230   | 236   | 242   | 248   |
| North Africa                 | 469  | 479   | 490   | 506   | 501   | 523   | 537   | 562   | 569   |
| Asian areas (AST)            | 2815 | 2876  | 2936  | 3006  | 3024  | 3258  | 3496  | 3737  | 3987  |
| Baltic Sea                   | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Black Sea                    |      | 0     |       |       |       |       | 0     | 0     | 0     |
| Mediterranean Sea            | 0    | 0     |       |       |       |       | 0     | 0     | 0     |
| North Sea                    |      |       |       |       |       |       | 0     | 0     | 0     |
| Kemaining N-E Atlantic Ocean |      | 0     |       |       |       |       | 0     | 0     | 0     |
| Natural marine emissions     | 0    | 0     |       |       |       | 0     | 0     | 0     | 0     |
| voicanic emissions           | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| TOTAL                        | 9909 | 10193 | 10255 | 10389 | 10478 | 10773 | 11093 | 11463 | 11835 |

Table B:7: National total emission trends of non-methane volatile organic compounds (2000-2007), as used for modelling at the MSC-W (Gg of NMVOC per year).

| Area/Year                    | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 23    | 25    | 26    | 29    | 32    | 33    | 33    | 33    |
| Armenia                      | 16    | 28    | 14    | 28    | 30    | 32    | 33    | 35    |
| Austria                      | 176   | 173   | 169   | 168   | 163   | 160   | 155   | 150   |
| Azerbaijan                   | 67    | 70    | 72    | 75    | 77    | 82    | 92    | 96    |
| Belarus                      | 430   | 420   | 411   | 402   | 393   | 384   | 375   | 367   |
| Belgium                      | 217   | 213   | 198   | 190   | 180   | 176   | 171   | 162   |
| Bosnia and Herzegovina       | 52    | 50    | 49    | 48    | 46    | 45    | 44    | 42    |
| Bulgaria                     | 107   | 94    | 102   | 107   | 94    | 96    | 97    | 90    |
| Croatia                      | 106   | 104   | 107   | 111   | 115   | 117   | 117   | 112   |
| Cyprus                       | 15    | 15    | 16    | 17    | 18    | 18    | 17    | 17    |
| Czech Republic               | 302   | 299   | 295   | 291   | 279   | 267   | 267   | 260   |
| Denmark                      | 172   | 164   | 159   | 152   | 149   | 145   | 141   | 137   |
| Estonia                      | 38    | 37    | 37    | 35    | 35    | 33    | 32    | 29    |
| Finland                      | 176   | 173   | 168   | 161   | 156   | 145   | 141   | 137   |
| France                       | 1615  | 1540  | 1410  | 1331  | 1256  | 1164  | 1047  | 938   |
| Georgia                      | 38    | 38    | 38    | 38    | 38    | 38    | 38    | 38    |
| Germany                      | 1609  | 1507  | 1439  | 1368  | 1377  | 1324  | 1336  | 1270  |
| Greece                       | 319   | 314   | 335   | 317   | 321   | 308   | 307   | 304   |
| Hungary                      | 205   | 206   | 190   | 192   | 183   | 168   | 156   | 150   |
| Iceland                      | 9     | 9     | 9     | 9     | 9     | 8     | 8     | 8     |
| Ireland                      | 122   | 122   | 122   | 120   | 120   | 120   | 120   | 120   |
| Italy                        | 1590  | 1527  | 1439  | 1418  | 1324  | 1339  | 1300  | 1284  |
| Kazakhstan                   | 170   | 175   | 177   | 187   | 194   | 205   | 223   | 245   |
| Kyrgyzstan                   | 20    | 21    | 23    | 25    | 26    | 28    | 32    | 36    |
| Latvia                       | 53    | 55    | 54    | 54    | 53    | 52    | 51    | 50    |
| Lithuania                    | 70    | 68    | 67    | 68    | 69    | 67    | 67    | 67    |
| Luxembourg                   | 16    | 16    | 16    | 14    | 16    | 15    | 14    | 13    |
| Malta                        | 3     | 3     | 3     | 3     | 3     | 3     | 4     | 3     |
| Montenegro                   | 10    | 9     | 8     | 9     | 10    | 8     | 9     | 10    |
| Netherlands                  | 252   | 225   | 212   | 198   | 185   | 190   | 184   | 183   |
| Norway                       | 390   | 400   | 355   | 311   | 278   | 229   | 200   | 197   |
| Poland                       | 596   | 572   | 596   | 584   | 598   | 606   | 647   | 618   |
| Portugal                     | 224   | 221   | 218   | 208   | 203   | 193   | 187   | 183   |
| Republic of Moldova          | 29    | 35    | 33    | 34    | 38    | 47    | 50    | 53    |
| Romania                      | 281   | 264   | 264   | 282   | 290   | 329   | 333   | 322   |
| Russian Federation           | 3414  | 3584  | 3754  | 3629  | 3519  | 3566  | 3207  | 3178  |
| Serbia                       | 146   | 144   | 145   | 147   | 150   | 147   | 143   | 147   |
| Slovakia                     | 121   | 121   | 120   | 113   | 114   | 107   | 104   | 98    |
| Slovenia                     | 52    | 49    | 50    | 49    | 46    | 43    | 43    | 42    |
| Spain                        | 947   | 914   | 886   | 848   | 831   | 803   | 778   | 766   |
| Sweden                       | 224   | 219   | 218   | 218   | 213   | 212   | 208   | 202   |
| Switzerland                  | 135   | 127   | 116   | 107   | 98    | 95    | 92    | 88    |
| Tajikistan                   | 6     | 8     | 9     | 9     | 10    | 9     | 11    | 13    |
| TFYR of Macedonia            | 48    | 40    | 39    | 39    | 39    | 37    | 39    | 39    |
| Turkey                       | 1072  | 987   | 997   | 1021  | 1027  | 1013  | 1013  | 1002  |
| Turkmenistan                 | 82    | 84    | 86    | 93    | 88    | 84    | 80    | 82    |
| Ukraine                      | 555   | 609   | 632   | 632   | 611   | 631   | 664   | 680   |
| United Kingdom               | 1648  | 1565  | 1471  | 1352  | 1264  | 1184  | 1136  | 1098  |
| Uzbekistan                   | 183   | 180   | 174   | 181   | 148   | 144   | 141   | 138   |
| North Africa                 | 1059  | 1058  | 1057  | 1057  | 1056  | 1055  | 1058  | 1062  |
| Asian areas (AST)            | 5200  | 5327  | 5454  | 5581  | 5708  | 5835  | 5935  | 6036  |
| Baltic Sea                   | 2     | 2     | 3     | 3     | 3     | 3     | 3     | 2     |
| Black Sea                    | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Mediterranean Sea            | 11    | 11    | 12    | 12    | 13    | 13    | 14    | 12    |
| North Sea                    | 6     | 6     | 6     | 6     | 6     | 7     | 7     | 6     |
| Remaining N-E Atlantic Ocean | 7     | 7     | 7     | 7     | 8     | 8     | 8     | 7     |
| Natural marine emissions     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Volcanic emissions           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| TOTAL                        | 24437 | 24237 | 24065 | 23689 | 23309 | 23171 | 22709 | 22460 |

Table B:8: National total emission trends of non-methane volatile organic compounds (2008-2016), as used for modelling at the MSC-W (Gg of NMVOC per year).

| Area/Year                    | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 33    | 33    | 34    | 35    | 35    | 36    | 37    | 37    | 38    |
| Armenia                      | 35    | 35    | 34    | 34    | 34    | 34    | 34    | 35    | 36    |
| Austria                      | 147   | 143   | 144   | 139   | 139   | 141   | 135   | 138   | 138   |
| Azerbaijan                   | 102   | 104   | 108   | 112   | 116   | 119   | 114   | 103   | 91    |
| Belarus                      | 387   | 362   | 308   | 346   | 347   | 339   | 330   | 310   | 291   |
| Belgium                      | 154   | 142   | 142   | 130   | 127   | 124   | 117   | 115   | 114   |
| Bosnia and Herzegovina       | 41    | 40    | 39    | 38    | 37    | 36    | 35    | 35    | 34    |
| Bulgaria                     | 90    | 89    | 90    | 91    | 89    | 83    | 82    | 83    | 84    |
| Croatia                      | 110   | 95    | 90    | 85    | 79    | 75    | 68    | 69    | 70    |
| Cyprus                       | 15    | 14    | 15    | 10    | 10    | 9     | 9     | 9     | 9     |
| Czech Republic               | 252   | 247   | 242   | 230   | 224   | 223   | 216   | 216   | 213   |
| Denmark                      | 132   | 125   | 122   | 115   | 112   | 112   | 103   | 106   | 103   |
| Estonia                      | 28    | 25    | 24    | 24    | 24    | 23    | 23    | 23    | 22    |
| Finland                      | 123   | 113   | 116   | 104   | 101   | 96    | 94    | 88    | 88    |
| France                       | 857   | 772   | 771   | 709   | 684   | 670   | 628   | 615   | 608   |
| Georgia                      | 37    | 37    | 39    | 39    | 38    | 45    | 43    | 40    | 40    |
| Germany                      | 1213  | 1116  | 1230  | 1146  | 1120  | 1105  | 1029  | 1039  | 1052  |
| Greece                       | 271   | 257   | 255   | 240   | 223   | 205   | 203   | 208   | 200   |
| Hungary                      | 144   | 146   | 144   | 147   | 147   | 149   | 140   | 143   | 141   |
| Iceland                      | 8     | 8     | 7     | 7     | 7     | 7     | 7     | 7     | 7     |
| Ireland                      | 115   | 113   | 109   | 107   | 108   | 111   | 106   | 107   | 108   |
| Italy                        | 1257  | 1180  | 1117  | 1027  | 1019  | 992   | 927   | 918   | 904   |
| Kazakhstan                   | 254   | 267   | 277   | 259   | 290   | 280   | 312   | 300   | 297   |
| Kyrgyzstan                   | 39    | 43    | 47    | 51    | 55    | 58    | 62    | 66    | 70    |
| Latvia                       | 45    | 44    | 42    | 42    | 43    | 43    | 44    | 42    | 40    |
| Lithuania                    | 61    | 59    | 59    | 57    | 56    | 52    | 53    | 52    | 52    |
| Luxembourg                   | 14    | 13    | 12    | 12    | 12    | 13    | 12    | 13    | 13    |
| Malta                        | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     |
| Montenegro                   | 10    | 10    | 8     | 9     | 8     | 8     | 8     | 8     | 8     |
| Netherlands                  | 175   | 165   | 175   | 170   | 166   | 158   | 152   | 149   | 141   |
| Norway                       | 164   | 149   | 150   | 144   | 144   | 147   | 157   | 157   | 152   |
| Poland                       | 633   | 617   | 636   | 616   | 611   | 603   | 591   | 591   | 609   |
| Portugal                     | 173   | 160   | 163   | 156   | 154   | 152   | 156   | 157   | 154   |
| Republic of Moldova          | 65    | 60    | 42    | 44    | 46    | 43    | 48    | 48    | 49    |
| Romania                      | 334   | 295   | 288   | 280   | 285   | 271   | 266   | 260   | 258   |
| Russian Federation           | 3281  | 3201  | 3339  | 3404  | 3505  | 3525  | 3528  | 3524  | 3548  |
| Serbia                       | 144   | 141   | 134   | 134   | 128   | 127   | 117   | 123   | 127   |
| Slovakia                     | 102   | 96    | 90    | 88    | 80    | 71    | 66    | 69    | 64    |
| Slovenia                     | 40    | 38    | 37    | 35    | 33    | 32    | 30    | 30    | 31    |
| Spain                        | 705   | 648   | 637   | 611   | 586   | 567   | 568   | 583   | 594   |
| Sweden                       | 191   | 185   | 184   | 177   | 167   | 163   | 161   | 162   | 159   |
| Switzerland                  | 87    | 84    | 83    | 80    | 78    | 77    | 74    | 72    | 71    |
| Tajikistan                   | 13    | 13    | 14    | 14    | 15    | 16    | 16    | 17    | 18    |
| TFYR of Macedonia            | 43    | 43    | 36    | 39    | 37    | 37    | 33    | 33    | 27    |
| Turkey                       | 1015  | 1039  | 1060  | 1043  | 1104  | 1049  | 1046  | 1086  | 1071  |
| Turkmenistan                 | 87    | 80    | 78    | 77    | 77    | 77    | 76    | 76    | 75    |
| Ukraine                      | 682   | 559   | 534   | 532   | 530   | 528   | 525   | 523   | 521   |
| United Kingdom               | 1022  | 928   | 903   | 890   | 878   | 850   | 842   | 837   | 821   |
| Uzbekistan                   | 138   | 141   | 139   | 134   | 130   | 125   | 121   | 116   | 112   |
| North Africa                 | 1066  | 1069  | 1073  | 1101  | 1095  | 1145  | 1176  | 1229  | 1244  |
| Asian areas (AST)            | 6136  | 6237  | 6337  | 6652  | 6833  | 7363  | 7901  | 8446  | 9011  |
| Baltic Sea                   | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| Black Sea                    | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Mediterranean Sea            | 11    | 10    | 10    | 10    | 10    | 8     | 8     | 8     | 8     |
| North Sea                    | 6     | 6     | 5     | 5     | 5     | 4     | 5     | 5     | 5     |
| Remaining N-E Atlantic Ocean | 7     | 6     | 6     | 6     | 6     | 5     | 5     | 5     | 5     |
| Natural marine emissions     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Volcanic emissions           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| TOTAL                        | 22305 | 21610 | 21785 | 21790 | 21993 | 22333 | 22647 | 23237 | 23755 |

Table B:9: National total emission trends of carbon monoxide (2000-2007), as used for modelling at the MSC-W (Gg of CO per year).

| Area/Year                    | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 92    | 97    | 109   | 125   | 154   | 151   | 158   | 145   |
| Armenia                      | 110   | 104   | 106   | 120   | 118   | 116   | 114   | 112   |
| Austria                      | 743   | 722   | 696   | 702   | 692   | 672   | 659   | 622   |
| Azerbaijan                   | 88    | 97    | 95    | 99    | 100   | 106   | 117   | 120   |
| Belarus                      | 1245  | 1214  | 1184  | 1154  | 1123  | 1093  | 1063  | 1033  |
| Belgium                      | 931   | 884   | 867   | 842   | 804   | 756   | 701   | 655   |
| Bosnia and Herzegovina       | 92    | 92    | 92    | 92    | 96    | 94    | 93    | 90    |
| Bulgaria                     | 347   | 301   | 347   | 353   | 313   | 297   | 309   | 277   |
| Croatia                      | 451   | 435   | 417   | 439   | 416   | 419   | 391   | 376   |
| Cyprus                       | 30    | 29    | 29    | 29    | 28    | 27    | 25    | 24    |
| Czech Republic               | 948   | 958   | 923   | 930   | 917   | 844   | 857   | 864   |
| Denmark                      | 464   | 454   | 431   | 433   | 416   | 417   | 404   | 409   |
| Estonia                      | 199   | 200   | 190   | 183   | 174   | 155   | 142   | 158   |
| Finland                      | 562   | 558   | 542   | 518   | 503   | 475   | 465   | 447   |
| France                       | 6633  | 6271  | 6038  | 5728  | 5822  | 5304  | 4710  | 4539  |
| Georgia                      | 131   | 170   | 173   | 167   | 187   | 221   | 225   | 178   |
| Germany                      | 4812  | 4636  | 4361  | 4181  | 3944  | 3737  | 3642  | 3525  |
| Greece                       | 953   | 951   | 890   | 853   | 839   | 799   | 826   | 751   |
| Hungary                      | 825   | 836   | 690   | 816   | 750   | 679   | 585   | 543   |
| Iceland                      | 49    | 51    | 54    | 54    | 56    | 51    | 59    | 76    |
| Ireland                      | 248   | 244   | 233   | 223   | 219   | 218   | 201   | 188   |
| Italy                        | 4855  | 4500  | 3929  | 3986  | 3434  | 3448  | 3296  | 3367  |
| Kazakhstan                   | 625   | 631   | 616   | 663   | 671   | 720   | 853   | 1009  |
| Kyrgyzstan                   | 90    | 97    | 105   | 113   | 120   | 128   | 146   | 163   |
| Latvia                       | 280   | 285   | 269   | 268   | 253   | 222   | 220   | 198   |
| Lithuania                    | 195   | 189   | 192   | 183   | 181   | 181   | 191   | 194   |
| Luxembourg                   | 42    | 43    | 40    | 40    | 42    | 38    | 35    | 39    |
| Malta                        | 14    | 12    | 11    | 11    | 10    | 11    | 10    | 10    |
| Montenegro                   | 40    | 37    | 34    | 40    | 40    | 37    | 36    | 37    |
| Netherlands                  | 750   | 748   | 740   | 733   | 742   | 722   | 733   | 721   |
| Norway                       | 621   | 604   | 596   | 572   | 543   | 547   | 521   | 506   |
| Poland                       | 3252  | 3107  | 3136  | 3045  | 3069  | 3059  | 3220  | 2977  |
| Portugal                     | 667   | 608   | 594   | 572   | 545   | 513   | 483   | 460   |
| Republic of Moldova          | 28    | 29    | 34    | 50    | 48    | 49    | 50    | 44    |
| Romania                      | 685   | 593   | 613   | 703   | 787   | 960   | 898   | 846   |
| Russian Federation           | 13244 | 13587 | 13929 | 14007 | 14524 | 14660 | 12650 | 12854 |
| Serbia                       | 392   | 394   | 394   | 408   | 425   | 399   | 353   | 398   |
| Slovakia                     | 376   | 395   | 368   | 390   | 378   | 378   | 337   | 321   |
| Slovenia                     | 182   | 177   | 172   | 168   | 154   | 150   | 140   | 132   |
| Spain                        | 2877  | 2469  | 2359  | 2271  | 2217  | 2155  | 2031  | 2017  |
| Sweden                       | 679   | 645   | 612   | 607   | 568   | 559   | 529   | 528   |
| Switzerland                  | 386   | 366   | 342   | 333   | 317   | 304   | 282   | 266   |
| Tajikistan                   | 50    | 56    | 65    | 67    | 77    | 78    | 87    | 98    |
| TFYR of Macedonia            | 145   | 113   | 115   | 116   | 121   | 115   | 118   | 113   |
| Turkey                       | 2605  | 2357  | 2420  | 2376  | 2376  | 2318  | 2350  | 2399  |
| Turkmenistan                 | 301   | 297   | 305   | 337   | 317   | 310   | 322   | 294   |
| Ukraine                      | 4154  | 4028  | 3901  | 3775  | 3420  | 3200  | 3025  | 2881  |
| United Kingdom               | 4369  | 4385  | 3902  | 3543  | 3334  | 3090  | 2899  | 2688  |
| Uzbekistan                   | 740   | 724   | 704   | 740   | 594   | 594   | 580   | 573   |
| North Africa                 | 2677  | 2600  | 2524  | 2447  | 2370  | 2294  | 2275  | 2257  |
| Asian areas (AST)            | 13567 | 13828 | 14089 | 14349 | 14610 | 14871 | 14970 | 15069 |
| Baltic Sea                   | 22    | 22    | 23    | 24    | 24    | 25    | 24    | 21    |
| Black Sea                    | 8     | 8     | 8     | 9     | 9     | 9     | 9     | 9     |
| Mediterranean Sea            | 101   | 104   | 108   | 112   | 116   | 119   | 129   | 114   |
| North Sea                    | 53    | 55    | 56    | 58    | 60    | 61    | 65    | 59    |
| Remaining N-E Atlantic Ocean | 63    | 64    | 66    | 68    | 69    | 71    | 76    | 69    |
| Natural marine emissions     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Volcanic emissions           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| TOTAL                        | 79089 | 77465 | 75841 | 75227 | 74241 | 73028 | 69690 | 68862 |

Table B:10: National total emission trends of carbon monoxide (2008-2016), as used for modelling at the MSC-W (Gg of CO per year).

| Area/Year                    | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  |
|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Albania                      | 148   | 146   | 150   | 154   | 158   | 162   | 165   | 169   | 173   |
| Armenia                      | 111   | 110   | 109   | 108   | 107   | 106   | 105   | 106   | 107   |
| Austria                      | 603   | 572   | 585   | 570   | 574   | 592   | 546   | 568   | 565   |
| Azerbaijan                   | 138   | 143   | 153   | 167   | 183   | 188   | 191   | 174   | 137   |
| Belarus                      | 1063  | 990   | 870   | 880   | 878   | 860   | 843   | 767   | 760   |
| Belgium                      | 657   | 429   | 499   | 396   | 345   | 523   | 322   | 375   | 368   |
| Bosnia and Herzegovina       | 86    | 94    | 94    | 94    | 94    | 95    | 95    | 95    | 95    |
| Bulgaria                     | 274   | 257   | 278   | 277   | 272   | 249   | 243   | 240   | 245   |
| Croatia                      | 324   | 316   | 300   | 273   | 255   | 232   | 203   | 217   | 202   |
| Cyprus                       | 22    | 20    | 19    | 17    | 16    | 15    | 15    | 14    | 15    |
| Czech Republic               | 805   | 802   | 823   | 805   | 803   | 821   | 798   | 795   | 798   |
| Denmark                      | 387   | 355   | 345   | 306   | 288   | 274   | 250   | 253   | 244   |
| Estonia                      | 157   | 156   | 157   | 132   | 142   | 134   | 129   | 129   | 140   |
| Finland                      | 423   | 397   | 410   | 373   | 364   | 350   | 344   | 322   | 324   |
| France                       | 4321  | 3843  | 4225  | 3517  | 3204  | 3254  | 2735  | 2682  | 2737  |
| Georgia                      | 178   | 172   | 173   | 171   | 158   | 180   | 178   | 167   | 168   |
| Germany                      | 3417  | 2972  | 3337  | 3250  | 2878  | 2850  | 2744  | 2850  | 2864  |
| Greece                       | 705   | 638   | 575   | 515   | 543   | 453   | 458   | 433   | 399   |
| Hungary                      | 484   | 527   | 531   | 541   | 557   | 550   | 471   | 458   | 450   |
| Iceland                      | 114   | 118   | 117   | 115   | 116   | 119   | 117   | 119   | 122   |
| Ireland                      | 180   | 159   | 145   | 134   | 127   | 119   | 112   | 109   | 103   |
| Italy                        | 3497  | 3112  | 3075  | 2435  | 2670  | 2502  | 2268  | 2378  | 2310  |
| Kazakhstan                   | 1082  | 1149  | 1252  | 1097  | 1361  | 1196  | 1520  | 1354  | 1313  |
| Kyrgyzstan                   | 180   | 198   | 215   | 232   | 250   | 267   | 285   | 302   | 319   |
| Latvia                       | 181   | 190   | 152   | 158   | 164   | 147   | 141   | 118   | 115   |
| Lithuania                    | 185   | 176   | 158   | 175   | 168   | 162   | 153   | 146   | 145   |
| Luxembourg                   | 33    | 30    | 29    | 26    | 27    | 26    | 25    | 21    | 22    |
| Malta                        | 11    | 9     | 8     | 8     | 7     | 7     | 7     | 6     | 6     |
| Montenegro                   | 35    | 29    | 30    | 33    | 32    | 32    | 31    | 31    | 30    |
| Netherlands                  | 725   | 676   | 675   | 652   | 619   | 589   | 562   | 569   | 559   |
| Norway                       | 493   | 445   | 457   | 432   | 425   | 396   | 375   | 382   | 380   |
| Poland                       | 2986  | 2909  | 3069  | 2784  | 2798  | 2664  | 2419  | 2370  | 2506  |
| Portugal                     | 418   | 398   | 400   | 373   | 361   | 342   | 326   | 334   | 322   |
| Republic of Moldova          | 47    | 46    | 50    | 52    | 51    | 52    | 78    | 78    | 81    |
| Romania                      | 949   | 873   | 868   | 792   | 814   | 762   | 766   | 744   | 742   |
| Russian Federation           | 12998 | 12333 | 10737 | 11198 | 11699 | 11946 | 12006 | 11993 | 12163 |
| Serbia                       | 379   | 357   | 348   | 345   | 308   | 284   | 268   | 272   | 276   |
| Slovakia                     | 311   | 268   | 277   | 260   | 255   | 247   | 254   | 247   | 240   |
| Slovenia                     | 127   | 130   | 131   | 128   | 124   | 123   | 106   | 107   | 110   |
| Spain                        | 1887  | 1731  | 1802  | 1757  | 1694  | 1652  | 1663  | 1649  | 1661  |
| Sweden                       | 514   | 502   | 491   | 479   | 455   | 450   | 437   | 427   | 429   |
| Switzerland                  | 256   | 240   | 230   | 209   | 201   | 194   | 175   | 167   | 162   |
| Tajikistan                   | 88    | 92    | 89    | 93    | 97    | 100   | 104   | 108   | 112   |
| TFYR of Macedonia            | 125   | 134   | 115   | 120   | 103   | 105   | 88    | 86    | 74    |
| Turkey                       | 2722  | 2933  | 2900  | 2597  | 2827  | 2044  | 1961  | 2185  | 2003  |
| Turkmenistan                 | 296   | 290   | 276   | 274   | 272   | 269   | 267   | 264   | 262   |
| Ukraine                      | 2669  | 3016  | 2889  | 2763  | 2636  | 2510  | 2383  | 2257  | 2130  |
| United Kingdom               | 2542  | 2093  | 2016  | 1835  | 1818  | 1815  | 1726  | 1689  | 1536  |
| Uzbekistan                   | 568   | 594   | 576   | 560   | 544   | 527   | 511   | 494   | 478   |
| North Africa                 | 2239  | 2220  | 2202  | 2281  | 2227  | 2328  | 2391  | 2499  | 2530  |
| Asian areas (AST)            | 15169 | 15268 | 15367 | 16047 | 16343 | 17611 | 18896 | 20199 | 21551 |
| Baltic Sea                   | 21    | 20    | 20    | 20    | 19    | 17    | 17    | 17    | 17    |
| Black Sea                    | 8     | 8     | 7     | 8     | 7     | 6     | 6     | 6     | 6     |
| Mediterranean Sea            | 99    | 94    | 90    | 93    | 89    | 76    | 77    | 77    | 77    |
| North Sea                    | 52    | 51    | 49    | 50    | 48    | 41    | 41    | 42    | 42    |
| Remaining N-E Atlantic Ocean | 62    | 59    | 58    | 59    | 56    | 48    | 49    | 49    | 49    |
| Natural marine emissions     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Volcanic emissions           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| TOTAL                        | 68547 | 65888 | 65008 | 63221 | 63633 | 63665 | 63445 | 64715 | 65774 |

Table B:11: National total emission trends of fine Particulate Matter (2000-2007), as used for modelling at the MSC-W (Gg of  $PM_{2.5}$  per year).

| Area/Year                    | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|------------------------------|------|------|------|------|------|------|------|------|
| Albania                      | 9    | 9    | 10   | 13   | 14   | 13   | 14   | 13   |
| Armenia                      | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |
| Austria                      | 25   | 25   | 24   | 24   | 24   | 23   | 23   | 22   |
| Azerbaijan                   | 6    | 6    | 6    | 5    | 5    | 5    | 5    | 6    |
| Belarus                      | 61   | 59   | 58   | 56   | 55   | 54   | 52   | 51   |
| Belgium                      | 41   | 30   | 37   | 37   | 37   | 35   | 36   | 34   |
| Bosnia and Herzegovina       | 16   | 17   | 18   | 10   | 20   | 20   | 10   | 18   |
| Bulgaria                     | 26   | 24   | 20   | 31   | 20   | 20   | 32   | 31   |
| Croatia                      | 20   | 24   | 25   | 40   | 20   | 41   | 32   | 24   |
| Croatia                      | 33   | 30   | 35   | 40   | 39   | 41   | 37   | 34   |
| Czech Penublic               | 51   | 52   | 40   | 40   | 18   | 45   | 46   | 43   |
| Denmerk                      | 24   | 24   | 49   | - 49 | - 40 | 43   | 40   | 43   |
| Estopia                      | 15   | 16   | 17   | 2.3  | 2.5  | 20   | 20   | 12   |
| Estolia                      | 20   | 20   | 20   | 20   | 20   | 14   | 10   | 27   |
| Finand                       | 29   | 217  | 205  | 204  | 29   | 20   | 20   | 27   |
| France<br>Capazzia           | 329  | 27   | 293  | 294  | 201  | 200  | 255  | 222  |
| Georgia                      | 162  | 157  | 20   | 146  | 142  | 125  | 121  | 126  |
| Graage                       | 105  | 62   | 57   | 56   | 57   | 133  | 59   | 120  |
| Una com                      | 30   | 52   | 27   | 30   | 37   | 38   | 38   | 30   |
| Hungary                      | 48   | 52   | 3/   | 40   | 42   | 40   | 40   | 40   |
| Iceland                      | 1    | 1    | 1    |      | 1    | 1    | 2    | 2    |
|                              | 24   | 197  | 157  | 23   | 151  | 172  | 179  | 22   |
| Italy<br>Kanalahatan         | 195  | 18/  | 157  | 1/0  | 151  | 1/3  | 1/8  | 202  |
| Kazakinstan                  | 54   | /1   | 60   | 00   | /3   | 81   | 08   | 125  |
| Kyrgyzstan                   | /    | 8    | 8    | 8    | 8    | 8    | 9    | 9    |
|                              | 23   | 23   | 23   | 24   | 26   | 23   | 23   | 22   |
|                              | /    | 8    | 8    | 8    | 8    | /    | 8    | 8    |
| Luxembourg                   | 2    | 3    | 2    | 3    | 3    | 2    | 2    | 2    |
| Malta                        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Montenegro                   | 4    | 4    | 27   | 25   | 3    | 22   | 22   | 21   |
| Netherlands                  | 29   | 28   | 27   | 25   | 24   | 22   | 22   | 21   |
| Norway                       | 42   | 42   | 43   | 40   | 39   | 39   | 3/   | 3/   |
| Poland                       | 1/0  | 170  | 169  | 168  | 169  | 169  | 1/2  | 165  |
| Portugal                     | 6/   | 65   | 65   | 62   | 64   | 62   | 58   | 5/   |
| Republic of Moldova          | 4    | 4    | 4    | 5    | 4    | 4    | 5    | 4    |
| Romania                      | 94   | /4   | //   | 92   | 104  | 123  | 118  | 118  |
| Russian Federation           | 489  | 481  | 472  | 437  | 4//  | 442  | 496  | 433  |
| Serbia                       | 39   | 39   | 40   | 40   | 41   | 39   | 36   | 40   |
| Slovakia                     | 31   | 33   | 29   | 27   | 29   | 38   | 33   | 29   |
| Slovenia                     | 10   | 11   | 11   | 11   | 11   | 12   | 11   | 11   |
| Spain                        | 185  | 157  | 159  | 160  | 158  | 157  | 154  | 155  |
| Sweden                       | 28   | 27   | 27   | 27   | 27   | 27   | 26   | 25   |
| Switzerland                  | 11   | 10   | 10   | 10   | 10   | 10   | 9    | 9    |
| Tajikistan                   | 2    | 1    | 2    | 2    | 2    | 3    | 3    | 3    |
| TFYR of Macedonia            | 30   | 18   | 19   | 29   | 31   | 28   | 27   | 21   |
| Turkey                       | 340  | 343  | 345  | 348  | 351  | 354  | 357  | 360  |
| Turkmenistan                 | 8    | 8    | 10   | 12   | 12   | 12   | 15   | 12   |
| Ukraine                      | 121  | 138  | 140  | 137  | 152  | 153  | 147  | 146  |
| United Kingdom               | 151  | 149  | 133  | 133  | 131  | 129  | 127  | 121  |
| Uzbekistan                   | 15   | 15   | 17   | 15   | 16   | 16   | 17   | 18   |
| North Africa                 | 93   | 95   | 98   | 100  | 102  | 104  | 107  | 109  |
| Asian areas (AST)            | 839  | 864  | 889  | 914  | 939  | 964  | 988  | 1011 |
| Baltic Sea                   | 16   | 16   | 16   | 16   | 16   | 16   | 14   |      |
| Black Sea                    | 5    | 6    | 6    | 6    | 6    | 6    | 1    | 6    |
| Mediterranean Sea            | 79   | 81   | 84   | 87   | 89   | 92   | 98   | 89   |
| North Sea                    | 38   | 38   | 38   | 38   | 38   | 38   | 40   | 34   |
| Remaining N-E Atlantic Ocean | 50   | 52   | 53   | 54   | 55   | 57   | 60   | 55   |
| Natural marine emissions     | 0    |      | 0    |      |      |      | 0    |      |
| volcanic emissions           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| TOTAL                        | 4271 | 4250 | 4176 | 4228 | 4292 | 4300 | 4322 | 4294 |

Table B:12: National total emission trends of fine Particulate Matter (2008-2016), as used for modelling at the MSC-W (Gg of  $PM_{2.5}$  per year).

| Area/Year                    | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
|------------------------------|------|------|------|------|------|------|------|------|------|
| Albania                      | 13   | 14   | 14   | 14   | 14   | 15   | 15   | 15   | 15   |
| Armenia                      | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |
| Austria                      | 21   | 20   | 20   | 20   | 19   | 20   | 18   | 18   | 18   |
| Azerbaijan                   | 6    | 6    | 6    | 6    | 7    | 7    | 6    | 6    | 5    |
| Belarus                      | 53   | 52   | 45   | 49   | 51   | 47   | 43   | 39   | 39   |
| Belgium                      | 34   | 30   | 32   | 26   | 27   | 29   | 22   | 24   | 25   |
| Bosnia and Herzegovina       | 17   | 16   | 15   | 15   | 15   | 15   | 14   | 14   | 14   |
| Bulgaria                     | 31   | 29   | 31   | 34   | 34   | 32   | 31   | 32   | 32   |
| Croatia                      | 32   | 31   | 31   | 28   | 26   | 24   | 20   | 21   | 18   |
| Cyprus                       | 2    | 2    | 2    | 2    | 1    | 1    | 1    | 1    | 1    |
| Czech Republic               | 42   | 42   | 45   | 43   | 43   | 43   | 41   | 40   | 39   |
| Denmark                      | 27   | 25   | 25   | 23   | 21   | 21   | 19   | 21   | 21   |
| Estonia                      | 12   | 10   | 14   | 18   | 8    | 11   | 8    | 9    | 7    |
| Finland                      | 25   | 24   | 26   | 22   | 22   | 21   | 21   | 19   | 20   |
| France                       | 217  | 206  | 214  | 186  | 191  | 192  | 167  | 168  | 170  |
| Georgia                      | 22   | 22   | 21   | 21   | 20   | 19   | 19   | 17   | 17   |
| Germany                      | 120  | 114  | 121  | 116  | 110  | 109  | 104  | 103  | 101  |
| Greece                       | 56   | 53   | 46   | 40   | 40   | 34   | 34   | 35   | 33   |
| Hungary                      | 37   | 47   | 50   | 57   | 60   | 61   | 52   | 55   | 53   |
| Iceland                      | 2    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Ireland                      | 22   | 21   | 19   | 17   | 17   | 17   | 16   | 16   | 15   |
| Italy                        | 216  | 201  | 196  | 150  | 177  | 172  | 155  | 166  | 162  |
| Kazakhstan                   | 143  | 133  | 122  | 131  | 139  | 147  | 155  | 163  | 172  |
| Kyrgyzstan                   | 9    | 10   | 10   | 10   | 11   | 11   | 11   | 12   | 12   |
| Latvia                       | 21   | 23   | 19   | 19   | 20   | 18   | 18   | 16   | 16   |
| Lithuania                    | 8    | 7    | 7    | 7    | 7    | 7    | 7    | 6    | 6    |
| Luxembourg                   | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 1    | 2    |
| Malta                        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Montenegro                   | 6    | 4    | 4    | 5    | 5    | 5    | 5    | 5    | 5    |
| Netherlands                  | 19   | 18   | 17   | 16   | 15   | 14   | 14   | 13   | 13   |
| Norway                       | 36   | 34   | 38   | 35   | 36   | 31   | 27   | 28   | 27   |
| Poland                       | 161  | 153  | 163  | 155  | 154  | 148  | 140  | 138  | 146  |
| Portugal                     | 54   | 51   | 51   | 53   | 53   | 48   | 48   | 48   | 47   |
| Republic of Moldova          | 4    | 4    | 4    | 5    | 5    | 5    | 11   | 11   | 11   |
| Romania                      | 139  | 132  | 132  | 122  | 125  | 116  | 115  | 110  | 110  |
| Russian Federation           | 399  | 392  | 429  | 436  | 448  | 435  | 433  | 410  | 389  |
| Serbia                       | 39   | 42   | 42   | 42   | 42   | 37   | 37   | 38   | 41   |
| Slovakia                     | 29   | 28   | 28   | 29   | 29   | 30   | 29   | 30   | 27   |
| Slovenia                     | 12   | 13   | 14   | 13   | 13   | 13   | 11   | 12   | 12   |
| Spain                        | 142  | 143  | 139  | 138  | 136  | 131  | 130  | 130  | 128  |
| Sweden                       | 24   | 23   | 23   | 23   | 22   | 22   | 19   | 18   | 18   |
| Switzerland                  | 9    | 8    | 8    | 8    | 8    | 8    | 7    | 7    | 7    |
| Tajikistan                   | 3    | 4    | 3    | 4    | 4    | 4    | 4    | 4    | 5    |
| TFYR of Macedonia            | 25   | 19   | 24   | 29   | 28   | 27   | 22   | 20   | 14   |
| Turkey                       | 362  | 365  | 368  | 371  | 374  | 377  | 379  | 382  | 385  |
| Turkmenistan                 | 12   | 15   | 14   | 15   | 16   | 16   | 17   | 18   | 18   |
| Ukraine                      | 162  | 139  | 135  | 136  | 138  | 139  | 141  | 142  | 143  |
| United Kingdom               | 119  | 114  | 122  | 111  | 116  | 118  | 112  | 113  | 109  |
| Uzbekistan                   | 17   | 19   | 19   | 20   | 20   | 21   | 21   | 22   | 22   |
| North Africa                 | 112  | 115  | 117  | 124  | 125  | 131  | 134  | 140  | 142  |
| Asian areas (AST)            | 1034 | 1058 | 1081 | 1121 | 1157 | 1247 | 1338 | 1430 | 1526 |
| Baltic Sea                   | 12   |      | 10   | 8    | 1    | 8    | 8    | 8    | 8    |
| Black Sea                    | 6    | 6    | 5    | 6    | 5    | 5    | 6    | 6    | 6    |
| Mediterranean Sea            | 81   | 79   | 277  | 84   | 15   | 19   | 81   | 80   | 80   |
| North Sea                    | 28   | 28   | 25   | 20   | 18   | 19   | 19   | 19   | 19   |
| Remaining N-E Atlantic Ocean | 51   | 51   | 50   | 53   | 4/   | 50   | 51   | 50   | 50   |
| Valaania amissions           |      |      | 1672 |      | 0    |      |      |      | 0    |
| voicance emissions           | 0    |      | 10/3 |      | 0    |      | 0    |      | U    |
| TOTAL                        | 4292 | 4214 | 5960 | 4241 | 4306 | 4362 | 4362 | 4453 | 4527 |

Table B:13: National total emission trends of coarse Particulate Matter (2000-2007), as used for modelling at the MSC-W (Gg of  $PM_{coarse}$  per year).

| Area/Year                    | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|------------------------------|------|------|------|------|------|------|------|------|
| Albania                      | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |
| Armenia                      | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Austria                      | 14   | 14   | 14   | 14   | 14   | 14   | 13   | 13   |
| Azerbaijan                   | 6    | 6    | 6    | 6    | 7    | 8    | 8    | 9    |
| Belarus                      | 15   | 14   | 14   | 14   | 13   | 13   | 13   | 12   |
| Belgium                      | 14   | 14   | 13   | 13   | 13   | 11   | 11   | 10   |
| Bosnia and Herzegovina       | 15   | 15   | 16   | 16   | 16   | 17   | 16   | 15   |
| Bulgaria                     | 21   | 21   | 19   | 22   | 23   | 26   | 27   | 31   |
| Croatia                      | 7    | 8    | 9    | 11   | 11   | 10   | 10   | 10   |
| Cyprus                       | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Czech Republic               | 19   | 18   | 17   | 16   | 16   | 16   | 16   | 17   |
| Denmark                      | 12   | 12   | 11   | 11   | 12   | 12   | 12   | 12   |
| Estonia                      | 17   | 16   | 11   | 10   | 9    | 8    | 7    | 10   |
| Finland                      | 15   | 15   | 15   | 16   | 16   | 15   | 16   | 15   |
| France                       | 110  | 108  | 105  | 107  | 106  | 101  | 99   | 97   |
| Georgia                      | 2    | 2    | 2    | 3    | 3    | 3    | 3    | 3    |
| Germany                      | 125  | 116  | 117  | 111  | 110  | 107  | 108  | 105  |
| Greece                       | 40   | 45   | 46   | 47   | 48   | 53   | 50   | 50   |
| Hungary                      | 27   | 26   | 25   | 28   | 30   | 28   | 24   | 22   |
| Iceland                      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    |
| Ireland                      | 16   | 18   | 17   | 18   | 19   | 19   | 20   | 20   |
| Italy                        | 49   | 51   | 49   | 48   | 47   | 44   | 43   | 41   |
| Kazakhstan                   | 12   | 16   | 13   | 14   | 17   | 18   | 16   | 40   |
| Kyrgyzstan                   | 4    | 4    | 3    | 3    | 3    | 3    | 4    | 4    |
| Latvia                       | 4    | 4    | 4    | 4    | 12   | 7    | 8    | 9    |
| Lithuania                    | 6    | 6    | 7    | 7    | 7    | 7    | 7    | 7    |
| Luxembourg                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Malta                        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Montenegro                   | 4    | 3    | 5    | 5    | 4    | 3    | 4    | 3    |
| Netherlands                  | 15   | 14   | 14   | 13   | 13   | 14   | 13   | 14   |
| Norway                       | 8    | 8    | 8    | 8    | 8    | 9    | 9    | 9    |
| Poland                       | 139  | 144  | 146  | 145  | 138  | 152  | 152  | 143  |
| Portugal                     | 33   | 48   | 52   | 39   | 39   | 40   | 43   | 34   |
| Republic of Moldova          | 5    | 5    | 2    | 5    | 5    | 5    | 5    | 5    |
| Romania                      | 22   | 23   | 22   | 25   | 27   | 34   | 35   | 39   |
| Russian Federation           | 234  | 241  | 248  | 294  | 323  | 300  | 266  | 237  |
| Serbia                       | 13   | 13   | 13   | 13   | 14   | 14   | 14   | 14   |
| Slovakia                     | 12   | 12   | 10   | 9    | 9    | 9    | 8    | 7    |
| Slovenia                     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Spain                        | 101  | 100  | 103  | 105  | 106  | 107  | 107  | 106  |
| Sweden                       | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 20   |
| Switzerland                  | 10   | 10   | 9    | 9    | 10   | 10   | 10   | 10   |
| Tajikistan                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| TFYR of Macedonia            | 14   | 9    | 9    | 13   | 14   | 13   | 12   | 10   |
| Turkey                       | 379  | 274  | 393  | 371  | 335  | 337  | 388  | 390  |
| Turkmenistan                 | 1    | 1    | 1    | 2    | 2    | 2    | 2    | 2    |
| Ukraine                      | 48   | 47   | 49   | 53   | 51   | 53   | 59   | 60   |
| United Kingdom               | 82   | 85   | 73   | 80   | 74   | 72   | 71   | 69   |
| Uzbekistan                   | 5    | 5    | 5    | 6    | 6    | 6    | 6    | 7    |
| North Africa                 | 75   | 77   | 79   | 80   | 82   | 84   | 87   | 89   |
| Asian areas (AST)            | 463  | 476  | 488  | 500  | 512  | 524  | 538  | 553  |
| Baltic Sea                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Black Sea                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mediterranean Sea            | 5    | 6    | 6    | 6    | 6    | 6    | 7    | 6    |
| North Sea                    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 2    |
| Remaining N-E Atlantic Ocean | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| Natural marine emissions     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Volcanic emissions           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| TOTAL                        | 2254 | 2183 | 2309 | 2358 | 2369 | 2373 | 2406 | 2399 |

Table B:14: National total emission trends of coarse Particulate Matter (2008-2016), as used for modelling at the MSC-W (Gg of  $PM_{coarse}$  per year).

| Area/Year                    | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
|------------------------------|------|------|------|------|------|------|------|------|------|
| Albania                      | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |
| Armenia                      | 1    | 1    | 1    | 1    | 1    | 2    | 2    | 2    | 2    |
| Austria                      | 14   | 13   | 13   | 13   | 13   | 13   | 13   | 13   | 13   |
| Azerbaijan                   | 10   | 13   | 11   | 10   | 10   | 11   | 11   | 13   | 11   |
| Belarus                      | 13   | 13   | 13   | 14   | 16   | 14   | 12   | 12   | 9    |
| Belgium                      | 10   | 8    | 9    | 8    | 8    | 9    | 8    | 8    | 9    |
| Bosnia and Herzegovina       | 14   | 13   | 12   | 12   | 12   | 12   | 12   | 12   | 12   |
| Bulgaria                     | 27   | 22   | 22   | 23   | 22   | 20   | 21   | 24   | 16   |
| Croatia                      | 11   | 10   | 8    | 8    | 8    | 7    | 7    | 7    | 7    |
| Cyprus                       | 2    | 2    | 2    | 1    | 1    | 1    | 1    | 1    | 1    |
| Czech Republic               | 16   | 14   | 14   | 13   | 13   | 13   | 13   | 12   | 12   |
| Denmark                      | 12   | 11   | 11   | 11   | 11   | 11   | 11   | 11   | 11   |
| Estonia                      | 7    | 6    | 9    | 16   | 5    | 7    | 5    | 5    | 4    |
| Finland                      | 14   | 14   | 15   | 14   | 13   | 13   | 13   | 13   | 13   |
| France                       | 95   | 90   | 91   | 92   | 91   | 90   | 88   | 88   | 85   |
| Georgia                      | 3    | 3    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |
| Germany                      | 105  | 100  | 106  | 110  | 109  | 112  | 112  | 111  | 102  |
| Greece                       | 49   | 40   | 46   | 42   | 43   | 30   | 29   | 29   | 29   |
| Hungary                      | 30   | 28   | 19   | 23   | 16   | 18   | 22   | 24   | 20   |
| Iceland                      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Ireland                      | 20   | 18   | 18   | 13   | 13   | 13   | 13   | 13   | 14   |
| Italy                        | 39   | 35   | 34   | 33   | 32   | 32   | 31   | 31   | 31   |
| Kazakhstan                   | 43   | 38   | 38   | 41   | 45   | 49   | 53   | 57   | 61   |
| Kyrgyzstan                   | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 5    |
| Latvia                       | 9    | 7    | 7    | 9    | 8    | 8    | 8    | 9    | 8    |
| Lithuania                    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Luxembourg                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Malta                        | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Montenegro                   | 4    | 3    | 4    | 7    | 7    | 7    | 8    | 8    | 8    |
| Netherlands                  | 14   | 14   | 13   | 14   | 13   | 13   | 14   | 14   | 14   |
| Norway                       | 8    | 8    | 8    | 8    | 9    | 8    | 8    | 8    | 8    |
| Poland                       | 137  | 131  | 137  | 126  | 127  | 121  | 112  | 110  | 114  |
| Portugal                     | 36   | 37   | 27   | 36   | 54   | 19   | 15   | 16   | 18   |
| Republic of Moldova          | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
| Romania                      | 35   | 33   | 34   | 34   | 34   | 32   | 33   | 32   | 31   |
| Russian Federation           | 221  | 235  | 363  | 372  | 385  | 383  | 385  | 381  | 373  |
| Serbia                       | 14   | 13   | 13   | 14   | 13   | 13   | 13   | 14   | 14   |
| Slovakia                     | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7    |
| Slovenia                     | 2    | 2    | 2    | 2    | 2    | 2    | 1    | 1    | 1    |
| Spain                        | 91   | 82   | 77   | 74   | 70   | 67   | 67   | 67   | 72   |
| Sweden                       | 19   | 18   | 18   | 20   | 18   | 20   | 18   | 19   | 19   |
| Switzerland                  | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   | 10   |
| Tajikistan                   | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| TFYR of Macedonia            | 11   | 9    | 10   | 13   | 12   | 13   | 11   | 9    | 7    |
| Turkey                       | 382  | 448  | 533  | 493  | 509  | 397  | 165  | 418  | 330  |
| Turkmenistan                 | 2    | 2    | 2    | 3    | 3    | 3    | 3    | 3    | 3    |
| Ukraine                      | 61   | 60   | 61   | 63   | 64   | 65   | 67   | 68   | 70   |
| United Kingdom               | 62   | 57   | 63   | 60   | 57   | 64   | 62   | 62   | 63   |
| Uzbekistan                   | 7    | 8    | 8    | 9    | 9    | 9    | 10   | 10   | 10   |
| North Africa                 | 92   | 95   | 98   | 103  | 104  | 109  | 112  | 117  | 119  |
| Asian areas (AST)            | 567  | 581  | 596  | 612  | 629  | 678  | 728  | 778  | 830  |
| Baltic Sea                   | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Black Sea                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mediterranean Sea            | 6    | 5    | 5    | 6    | 5    | 5    | 6    | 5    | 5    |
| North Sea                    | 2    | 2    | 2    | 1    | 1    | 1    | 1    | 1    | 1    |
| Remaining N-E Atlantic Ocean | 3    | 3    | 2    | 3    | 2    | 3    | 3    | 3    | 3    |
| Natural marine emissions     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Volcanic emissions           | 0    | 0    | 4297 | 0    | 0    | 0    | 0    | 0    | 0    |
| TOTAL                        | 2364 | 2385 | 6920 | 2628 | 2668 | 2563 | 2372 | 2686 | 2629 |

Table B:15: National total emission trends of Particulate Matter (2000-2007), as used for modelling at the MSC-W (Gg of  $PM_{10}$  per year).

| Area/Year              | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
|------------------------|------|------|------|------|------|------|------|------|
| Albania                | 12   | 13   | 14   | 17   | 18   | 17   | 18   | 17   |
| Armenia                | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    |
| Austria                | 39   | 39   | 38   | 38   | 37   | 37   | 36   | 35   |
| Azerbaijan             | 11   | 11   | 12   | 12   | 12   | 13   | 14   | 15   |
| Belarus                | 75   | 74   | 72   | 70   | 68   | 67   | 65   | 63   |
| Belgium                | 55   | 52   | 50   | 51   | 50   | 46   | 47   | 44   |
| Bosnia and Herzegovina | 31   | 32   | 34   | 35   | 36   | 37   | 35   | 33   |
| Bulgaria               | 47   | 44   | 48   | 54   | 54   | 57   | 59   | 62   |
| Croatia                | 41   | 44   | 44   | 51   | 50   | 51   | 47   | 45   |
| Cyprus                 | 5    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |
| Czech Republic         | 70   | 70   | 65   | 65   | 65   | 61   | 62   | 60   |
| Denmark                | 36   | 36   | 34   | 36   | 36   | 37   | 38   | 41   |
| Estonia                | 32   | 32   | 28   | 24   | 25   | 22   | 16   | 23   |
| Finland                | 44   | 45   | 45   | 46   | 45   | 43   | 44   | 42   |
| France                 | 439  | 425  | 400  | 401  | 387  | 361  | 334  | 320  |
| Georgia                | 31   | 30   | 29   | 28   | 28   | 27   | 27   | 26   |
| Germany                | 288  | 274  | 268  | 258  | 252  | 242  | 239  | 230  |
| Greece                 | 98   | 107  | 103  | 103  | 105  | 110  | 108  | 107  |
| Hungary                | 75   | 78   | 62   | 75   | 72   | 68   | 64   | 62   |
| Iceland                | 2    | 2    | 1    | 2    | 2    | 2    | 2    | 2    |
| Ireland                | 40   | 41   | 40   | 41   | 42   | 43   | 43   | 42   |
| Italy                  | 245  | 237  | 206  | 224  | 198  | 218  | 220  | 244  |
| Kazakhstan             | 65   | 86   | 73   | 80   | 90   | 100  | 84   | 164  |
| Kyrgyzstan             | 11   | 11   | 11   | 11   | 12   | 12   | 12   | 13   |
| Latvia                 | 27   | 27   | 27   | 29   | 37   | 30   | 30   | 31   |
| Lithuania              | 14   | 14   | 15   | 14   | 15   | 15   | 15   | 15   |
| Luxembourg             | 3    | 3    | 3    | 4    | 3    | 3    | 3    | 3    |
| Malta                  | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Montenegro             | 8    | 7    | 9    | 10   | 10   | 8    | 9    | 8    |
| Netherlands            | 44   | 42   | 41   | 38   | 37   | 36   | 35   | 35   |
| Norway                 | 50   | 50   | 51   | 48   | 47   | 48   | 46   | 47   |
| Poland                 | 309  | 314  | 315  | 312  | 307  | 321  | 324  | 308  |
| Portugal               | 100  | 113  | 117  | 101  | 103  | 102  | 102  | 91   |
| Republic of Moldova    | 9    | 9    | 6    | 9    | 9    | 10   | 10   | 9    |
| Romania                | 117  | 97   | 99   | 116  | 132  | 157  | 153  | 157  |
| Russian Federation     | 723  | 722  | 720  | 732  | 800  | 742  | 762  | 669  |
| Serbia                 | 52   | 51   | 53   | 54   | 55   | 53   | 50   | 54   |
| Slovakia               | 44   | 45   | 39   | 36   | 38   | 47   | 41   | 36   |
| Slovenia               | 12   | 12   | 13   | 13   | 13   | 14   | 13   | 13   |
| Spain                  | 286  | 257  | 262  | 265  | 264  | 264  | 261  | 261  |
| Sweden                 | 46   | 46   | 45   | 46   | 46   | 46   | 45   | 45   |
| Switzerland            | 20   | 20   | 19   | 19   | 19   | 19   | 19   | 19   |
| Tajikistan             | 2    | 2    | 3    | 3    | 3    | 4    | 4    | 4    |
| TFYR of Macedonia      | 43   | 28   | 28   | 42   | 46   | 41   | 39   | 31   |
| Turkey                 | 719  | 616  | 739  | 719  | 687  | 691  | 745  | 750  |
| Turkmenistan           | 9    | 9    | 11   | 13   | 14   | 14   | 17   | 14   |
| Ukraine                | 169  | 185  | 189  | 190  | 203  | 207  | 205  | 206  |
| United Kingdom         | 232  | 234  | 206  | 214  | 205  | 201  | 198  | 190  |
| Uzbekistan             | 20   | 20   | 22   | 21   | 104  | 100  | 23   | 25   |
| North Africa           | 169  | 1/2  | 176  | 180  | 184  | 188  | 193  | 199  |
| Asian areas (AST)      | 1302 | 1339 | 15// | 1414 | 1451 | 1488 | 1526 | 1564 |
| Dattic Sea             | 1/   |      | 1/   |      | 1/   | 1/   | 15   | 12   |
| Black Sea              | 0    | 6    | 6    | 6    | 6    | /    | 105  | 6    |
| Nediterranean Sea      | 84   | 87   | 90   | 93   | 95   | 98   | 105  | 95   |
| North Sea              | 40   | 40   | 40   | 40   | 40   | 40   | 43   | 51   |
| Netural marine and     | 55   | 54   | 50   | 5/   | 58   | 29   | 63   | 58   |
| Valaania amiasiana     |      |      | 0    |      | 0    |      | 0    |      |
| voicanic emissions     | U    | 0    | U    | 0    | U    | 0    | U    | 0    |
| TOTAL                  | 6526 | 6433 | 6485 | 6587 | 6661 | 6673 | 6728 | 6693 |

Table B:16: National total emission trends of Particulate Matter (2008-2016), as used for modelling at the MSC-W (Gg of  $PM_{10}$  per year).

| Area/Year                    | 2008 | 2009 | 2010  | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
|------------------------------|------|------|-------|------|------|------|------|------|------|
| Albania                      | 17   | 18   | 18    | 18   | 18   | 19   | 19   | 19   | 19   |
| Armenia                      | 5    | 5    | 5     | 5    | 5    | 6    | 6    | 6    | 6    |
| Austria                      | 35   | 33   | 33    | 33   | 33   | 33   | 31   | 31   | 31   |
| Azerbaijan                   | 16   | 18   | 18    | 16   | 17   | 17   | 17   | 19   | 16   |
| Belarus                      | 66   | 65   | 58    | 63   | 68   | 61   | 55   | 51   | 48   |
| Belgium                      | 43   | 38   | 41    | 34   | 35   | 37   | 30   | 33   | 34   |
| Bosnia and Herzegovina       | 31   | 29   | 27    | 27   | 27   | 26   | 26   | 26   | 26   |
| Bulgaria                     | 58   | 51   | 53    | 57   | 56   | 52   | 52   | 55   | 48   |
| Croatia                      | 43   | 41   | 39    | 36   | 34   | 31   | 27   | 28   | 26   |
| Cyprus                       | 4    | 4    | 3     | 3    | 2    | 2    | 2    | 2    | 2    |
| Czech Republic               | 58   | 56   | 59    | 56   | 56   | 56   | 53   | 53   | 52   |
| Denmark                      | 39   | 36   | 36    | 34   | 32   | 32   | 30   | 31   | 31   |
| Estonia                      | 19   | 16   | 23    | 34   | 13   | 18   | 13   | 14   | 11   |
| Finland                      | 40   | 38   | 41    | 37   | 35   | 34   | 34   | 32   | 33   |
| France                       | 312  | 296  | 306   | 278  | 283  | 282  | 255  | 257  | 255  |
| Georgia                      | 26   | 25   | 25    | 24   | 24   | 23   | 23   | 22   | 22   |
| Germany                      | 225  | 214  | 227   | 226  | 219  | 221  | 216  | 214  | 203  |
| Greece                       | 104  | 93   | 91    | 82   | 83   | 63   | 63   | 64   | 62   |
| Hungary                      | 67   | 75   | 69    | 80   | 76   | 79   | 74   | 78   | 73   |
| Iceland                      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    |
| Ireland                      | 41   | 39   | 37    | 31   | 30   | 31   | 29   | 30   | 29   |
| Italy                        | 256  | 236  | 231   | 183  | 209  | 204  | 187  | 197  | 193  |
| Kazakhstan                   | 187  | 171  | 160   | 172  | 184  | 196  | 208  | 220  | 232  |
| Kyrgyzstan                   | 13   | 14   | 14    | 14   | 15   | 15   | 16   | 16   | 17   |
| Latvia                       | 30   | 29   | 25    | 28   | 28   | 26   | 26   | 26   | 24   |
| Lithuania                    | 15   | 14   | 14    | 14   | 14   | 14   | 14   | 13   | 13   |
| Luxembourg                   | 3    | 3    | 3     | 2    | 2    | 2    | 2    | 2    | 2    |
| Malta                        | 2    | 2    | 1     | 1    | 1    | 1    | 2    | 1    | 1    |
| Montenegro                   | 10   | 7    | 8     | 12   | 12   | 12   | 12   | 13   | 13   |
| Netherlands                  | 34   | 31   | 30    | 30   | 28   | 28   | 27   | 27   | 26   |
| Norway                       | 44   | 43   | 46    | 43   | 45   | 39   | 36   | 36   | 36   |
| Poland                       | 298  | 284  | 300   | 280  | 280  | 269  | 252  | 249  | 259  |
| Portugal                     | 90   | 88   | 79    | 89   | 107  | 67   | 63   | 64   | 65   |
| Republic of Moldova          | 9    | 9    | 10    | 10   | 10   | 10   | 16   | 16   | 16   |
| Romania                      | 173  | 165  | 166   | 157  | 159  | 148  | 148  | 142  | 141  |
| Russian Federation           | 620  | 628  | 792   | 808  | 833  | 818  | 818  | 791  | 762  |
| Serbia                       | 54   | 55   | 56    | 56   | 55   | 50   | 49   | 51   | 55   |
| Slovakia                     | 36   | 36   | 35    | 36   | 36   | 37   | 36   | 37   | 34   |
| Slovenia                     | 14   | 15   | 15    | 15   | 15   | 15   | 13   | 13   | 13   |
| Spain                        | 233  | 225  | 216   | 212  | 206  | 199  | 197  | 198  | 200  |
| Sweden                       | 43   | 41   | 41    | 43   | 39   | 41   | 37   | 37   | 38   |
| Switzerland                  | 19   | 18   | 18    | 18   | 18   | 18   | 17   | 17   | 17   |
| Tajikistan                   | 5    | 5    | 5     | 5    | 6    | 6    | 6    | 7    | 7    |
| TFYR of Macedonia            | 36   | 28   | 34    | 41   | 40   | 40   | 33   | 29   | 21   |
| Turkey                       | 744  | 813  | 901   | 864  | 883  | 773  | 544  | 800  | 715  |
| Turkmenistan                 | 14   | 17   | 17    | 18   | 18   | 19   | 20   | 21   | 21   |
| Ukraine                      | 223  | 199  | 196   | 199  | 202  | 205  | 207  | 210  | 213  |
| United Kingdom               | 181  | 170  | 185   | 171  | 174  | 181  | 173  | 175  | 172  |
| Uzbekistan                   | 24   | 27   | 28    | 28   | 29   | 30   | 31   | 32   | 32   |
| North Africa                 | 204  | 210  | 215   | 227  | 229  | 240  | 246  | 257  | 261  |
| Asian areas (AST)            | 1601 | 1639 | 1677  | 1734 | 1786 | 1925 | 2065 | 2208 | 2356 |
| Baltic Sea                   | 12   | 12   | 11    | 9    | 8    | 8    | 8    | 8    | 8    |
| Black Sea                    | 6    | 6    | 6     | 6    | 5    | 6    | 6    | 6    | 6    |
| Mediterranean Sea            | 86   | 85   | 83    | 89   | 80   | 84   | 86   | 85   | 85   |
| North Sea                    | 30   | 30   | 27    | 21   | 19   | 20   | 20   | 20   | 20   |
| Remaining N-E Atlantic Ocean | 54   | 53   | 52    | 55   | 49   | 52   | 53   | 53   | 53   |
| Natural marine emissions     | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    |
| Volcanic emissions           | 0    | 0    | 5970  | 0    | 0    | 0    | 0    | 0    | 0    |
| TOTAL                        | 6657 | 6599 | 12880 | 6869 | 6975 | 6925 | 6733 | 7140 | 7155 |

# APPENDIX C

## Source-receptor tables for 2016

The source-receptor tables in this appendix are calculated for the meteorological and chemical conditions of 2016. The EMEP MSC-W model version rv4.17 has been used for the 2016 source-receptor model runs. The emissions used are the latest reported emissions for 2016 as shown in Appendix A.

It can be noted that there also have been many changes in chemistry, deposition, and vertical resolution in the current rv4.17 setup compared to the rv4.9 source-receptor matrix calculations performed in EMEP Report 1/2016. For example, the increased increased  $NO_2$  deposition rates discussed in EMEP Report 1/2017 (Chapter 8) can lead to increased local-scale deposition in some region, and the calculations of POD<sub>1</sub> for forests have changed. For more details see Chapter 8.

The tables are calculated for the new EMEP domain, which covers the geographic area between 30°N-82°N latitude and 30°W-90°E longitude, and are based on model runs driven by ECMWF-IFS meteorology in  $0.3^{\circ} \times 0.2^{\circ}$  longitude-latitude projection.

The source-receptor (SR) relationships give the change in air concentrations or depositions resulting from a change in emissions from each emitter country.

For each country, reductions in five different pollutants have been calculated separately, with an emission reduction of 15% for  $SO_x$ ,  $NO_x$ ,  $NH_3$ , NMVOC or PPM, respectively. Here reduction in PPM means that  $PPM_{fine}$  and  $PPM_{coarse}$  are reduced together in one simulation. For year 2016, reductions in volcanic emissions are done for passive  $SO_2$  degassing of Italian volcanoes (Etna, Stromboli and Vulcano). The boundary conditions for all gaseous and aerosol species were given as 5-year monthly average concentrations, derived from EMEP MSC-W global runs, kept invariable over the calculation period.

The deposition tables show the contribution from one country to another. They have been calculated adding the differences obtained by a 15% reduction for all emissions in one country multiplied by a factor of 100/15, in order to arrive at total estimates.

For the concentrations and indicator tables, the differences obtained by the 15% emission reduction of the relevant pollutants are given directly. Thus, the tables should be interpreted as estimates of this reduction scenario from the chemical conditions in 2016.

The SR tables in the following aim to respond to two fundamental questions about transboundary air pollution:

- 1. Where do the pollutants emitted by a country or region end up?
- 2. Where do the pollutants in a given country or region come from?

Each column answers the first question. The numbers within a column give the change in the value of each pollutant (or indicator) for each receiver country caused by the emissions in the country given at the top of the column.

Each row answers the second question. The numbers given in each row show which emitter countries were responsible for the change in pollutants in the country given at the beginning of each row.

Note that more information on aerosol components and SR tables in electronic format are available from the EMEP website www.emep.int.

#### Acidification and eutrophication

- Deposition of OXS (oxidised sulphur). The contribution from  $SO_x$ ,  $NO_x$ ,  $NH_3$ , PPM and VOC emissions have been summed up and scaled to a 100% reduction. Units: 100 Mg of S.
- Deposition of OXN (oxidised nitrogen). The contribution from  $SO_x$ ,  $NO_x$ ,  $NH_3$ , PPM and VOC emissions have been summed up and scaled to a 100% reduction. Units: 100 Mg of N.
- Deposition of RDN (reduced nitrogen). The contribution from SO<sub>x</sub>, NO<sub>x</sub>, NH<sub>3</sub>, PPM and VOC emissions have been summed up and scaled to a 100% reduction. Units: 100 Mg of N.

#### **Ground Level Ozone**

- AOT40 $_{f}^{uc}$ . Effect of a 15% reduction in NO<sub>x</sub> emissions. Units: ppb.h
- AOT40 $_{f}^{uc}$ . Effect of a 15% reduction in VOC emissions. Units: ppb.h
- SOMO35. Effect of a 15% reduction in NO<sub>x</sub> emissions. Units: ppb.d
- SOMO35. Effect of a 15% reduction in VOC emissions. Units: ppb.d

### **Particulate Matter**

- PM<sub>2.5</sub>. Effect of a 15% reduction in PPM emissions. Units: ng/m<sup>3</sup>
- $PM_{2.5}$ . Effect of a 15% reduction in  $SO_x$  emissions. Units: ng/m<sup>3</sup>
- $PM_{2.5}$ . Effect of a 15% reduction in  $NO_x$  emissions. Units: ng/m<sup>3</sup>
- PM<sub>2.5</sub>. Effect of a 15% reduction in NH<sub>3</sub> emissions. Units: ng/m<sup>3</sup>
- $PM_{2.5}$ . Effect of a 15% reduction in VOC emissions. Units: ng/m<sup>3</sup>
- $PM_{2.5}$ . Effect of a 15% reduction in all emissions. The contribution from a 15% reduction in PPM,  $SO_x$ ,  $NO_x$ ,  $NH_3$  and VOC emissions have been summed up. Units:  $ng/m^3$

## **Fine Elemental Carbon**

• Fine EC. Effect of a 15% reduction in PPM emissions. Units:  $0.1 \text{ ng/m}^3$ 

### **Coarse Elemental Carbon**

• Coarse EC. Effect of a 15% reduction in PPM emissions. Units: 0.1 ng/m<sup>3</sup>

Table C.1: 2016 country-to-country blame matrices for **oxidised sulphur** deposition. Units: 100 Mg of S. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | AL | AM  | AT | ΑZ      | ΒA  | BE      | ΒG  | ΒY     | СН | CY | CZ      | DE       | DK | EE  | ES   | FI  | FR       | GB  | GE      | GR  | HR | ΗU  | IE | IS  | IT     | KG  | ΚZ   | LT | LU | LV | MD | ME     |          |
|----------|----|-----|----|---------|-----|---------|-----|--------|----|----|---------|----------|----|-----|------|-----|----------|-----|---------|-----|----|-----|----|-----|--------|-----|------|----|----|----|----|--------|----------|
| AL       | 34 | 0   | 0  | 0       | 5   | 0       | 1   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 1    | 0   | 0        | 0   | 0       | 4   | 0  | 0   | 0  | 0   | 5      | 0   | 0    | 0  | 0  | 0  | 0  | 4      | AL       |
| AM       | 0  | 68  | 0  | 1       | 0   | 0       | 0   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 1       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 1    | 0  | -0 | 0  | 0  | 0      | AM       |
| AT       | 0  | 0   | 31 | 0       | 7   | 1       | 1   | 0      | 1  | 0  | 18      | 37       | 0  | 0   | 1    | 0   | 3        | 1   | 0       | 0   | 1  | 1   | 0  | 0   | 3      | 0   | 0    | 0  | 0  | 0  | 0  | 1      | AT       |
| AZ       | 0  | 21  | 0  | 27      | 0   | 0       | 0   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 5       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 5    | 0  | 0  | 0  | 0  | 0      | AZ       |
| BA       | 1  | 0   | 1  | 0       | 302 | 0       | 2   | 0      | 0  | 0  | 4       | 3        | 0  | 0   | 2    | 0   | 1        | 0   | 0       | 1   | 3  | 2   | 0  | 0   | 5      | 0   | 0    | 0  | 0  | 0  | 0  | 15     | BA       |
| BE       | 0  | -0  | 0  | -0      | 0   | 50      | 0   | 0      | 0  | -0 | 0       | 17       | 0  | 0   | 1    | 0   | 15       | 6   | -0      | 0   | 0  | 0   | 0  | 0   | 0      | -0  | 0    | 0  | 0  | 0  | 0  | 0      | BE       |
| BG       | 2  | 0   | 0  | 0       | 11  | 0       | 181 | 1      | 0  | 0  | 2       | 2        | 0  | 0   | 1    | 0   | 0        | 0   | 0       | 18  | 0  | 1   | 0  | 0   | 2      | 0   | 1    | 0  | 0  | 0  | 1  | 6      | BG       |
| BY       | 0  | 0   | 1  | 0       | 9   | 1       | 5   | 103    | 0  | 0  | 11      | 22       | 1  | 3   | 1    | 2   | 2        | 3   | 0       | 1   | 0  | 1   | 0  | 0   | 1      | 0   | 3    | 6  | 0  | 1  | 1  | 3      | BY       |
| СН       | 0  | 0   | 0  | 0       | 0   | 0       | 0   | 0      | 14 | 0  | 1       | 7        | 0  | 0   | 2    | 0   | 8        | 1   | 0       | 0   | 0  | 0   | 0  | 0   | 3      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | СН       |
| CY       | 0  | 0   | 0  | 0       | 0   | 0       | 0   | 0      | 0  | 4  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | CY       |
| C7       | 0  | 0   | 3  | 0       | 6   | 1       | 1   | 0      | 0  | 0  | 158     | 48       | 0  | 0   | 1    | 0   | 3        | 2   | 0       | 0   | 1  | 2   | 0  | 0   | 1      | 0   | 0    | 0  | 0  | 0  | 0  | 1      | C7       |
|          | 0  | 0   | 6  | 0       | 1   | 32      | 1   | 1      | 5  | 0  | 56      | 702      | 1  | 1   | 7    | 0   | 18       | 28  | 0       | 0   | 0  | 1   | 1  | 0   | 2      | 0   | 0    | 1  | 1  | 0  | 0  | 0      |          |
|          | 0  | 0   | 0  | 0       | -   | 32<br>2 | 0   | 0      | 0  | 0  | 30<br>2 | 102      | 0  | 0   | 1    | 0   | -0<br>-2 | 20  | 0       | 0   | 0  | 0   | 0  | 0   | ے<br>م | 0   | 0    | 0  | 0  | 0  | 0  | 0      |          |
| FF       | 0  | 0   | 0  | 0       | 1   | 0       | 0   | 2      | 0  | 0  | 1       | 10       | 0  | 1/  | 0    | 1   | 2        | 1   | 0       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 1  | 0  | 1  | 0  | 0      | FF       |
| ES       | 0  | 0   | 0  | 0       | 1   | 1       | 0   | 2<br>0 | 0  | 0  | 1       | 4        | 0  | 14  | 371  | -   | 7        | 2   | 0       | 0   | 0  | 0   | 0  | 0   | 2      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | ES       |
|          | 0  | 0   | 0  | 0       | 2   | 1       | 1   | 3      | 0  | 0  | т<br>Б  | 12       | 1  | 12  | 3/1  | 68  | 1        | 2   | -0      | 0   | 0  | 0   | 0  | 0   | 2      | 0   | 1    | 2  | 0  | 0  | 0  | 0      | EI       |
|          | 0  | 0   | 1  | 0       | 2   | 16      | 1   | 0      | 2  | 0  | 5       | 13<br>E0 | 1  | 13  | 07   | 00  | 200      | 21  | 0       | 0   | 1  | 0   | 1  | 0   | 0      | 0   | 1    | 2  | 1  | 0  | 0  | 0      | ED       |
|          | 0  | 0   | 1  | 0       | 2   | 10      | 0   | 0      | 0  | 0  | 0       | 17       | 0  | 0   | 07   | 0   | 10       | 206 | 0       | 0   | 1  | 0   | 1  | 1   | 9      | 0   | 0    | 0  | 1  | 0  | 0  | 0      |          |
| GD       | 0  | 14  | 0  | -0<br>E | 1   | 4       | 1   | 0      | 0  | 1  | 2       | 17       | 0  | 0   | 1    | 0   | 12       | 200 | -0      | 1   | 0  | 0   | 0  | 1   | 0      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | GD       |
|          | 0  | 14  | 0  | 0       | 1   | 0       | 1   | 0      | -0 | 1  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 34<br>0 | 1   | 0  | 0   | 0  | 0   | 0      | 0   | 2    | 0  | 0  | 0  | 0  | 0      | GE       |
| GL       | 0  | 0   | 0  | 0       | 0   | 0       | 0   | 0      | 0  | 0  | 1       | 0        | 0  | 0   | 0    | 0   | 1        | 0   | 0       | 0   | 0  | 1   | 0  | 0   | 0      | 0   | 1    | 0  | 0  | 0  | 0  | 0      | GL       |
| GR       | 2  | 0   | 0  | 0       | (1  | 0       | 23  | 0      | 0  | 0  | 1       | 2        | 0  | 0   | 2    | 0   | 1        | 0   | 0       | 92  | 0  | 1   | 0  | 0   | 0      | 0   | 1    | 0  | 0  | 0  | 0  | 3      | GR       |
| нк       | 1  | 0   | 2  | 0       | 01  | 0       | 1   | 0      | 0  | 0  | 10      | 5        | 0  | 0   | 3    | 0   | 2        | 0   | 0       | 1   | 23 | 3   | 0  | 0   | 9      | 0   | 0    | 0  | 0  | 0  | 0  | 4      | нк       |
| HU       | 1  | 0   | 3  | 0       | 45  | 0       | 5   | 0      | 0  | 0  | 12      | 9        | 0  | 0   | 1    | 0   | 1        | 1   | 0       | 2   | 4  | 48  | 0  | 0   | 3      | 0   | 0    | 0  | 0  | 0  | 0  | 8<br>0 | HU       |
| IE       | 0  | 0   | 0  | 0       | 0   | 1       | 0   | 0      | 0  | -0 | 0       | 2        | 0  | 0   | 2    | 0   | 2        | 11  | -0      | 0   | 0  | 0   | 22 | 0   | 0      | -0  | 0    | 0  | 0  | 0  | 0  | 0      | IE       |
| IS<br>IT | 0  | 0   | 0  | 0       | 0   | 0       | 0   | 0      | 0  | 0  | 0       | 1        | 0  | 0   | 0    | 0   | 0        | 2   | 0       | 0   | 0  | 0   | 0  | 53  | 0      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | IS<br>IT |
|          | 1  | 0   | 2  | 0       | 29  | 1       | 3   | 0      | 1  | 0  | 5       | (        | 0  | 0   | 21   | 0   | 23       | 1   | 0       | 2   | 8  | 1   | 0  | 0   | 211    | 0   | 0    | 0  | 0  | 0  | 0  | 5      |          |
| KG       | 0  | 1   | 0  | 0       | 0   | 0       | 0   | 0      | -0 | 0  | 0       | 0        | 0  | 0   | -0   | 0   | -0       | 0   | 0       | 0   | -0 | 0   | -0 | -0  | 0      | 119 | 39   | 0  | -0 | 0  | 0  | 0      | KG       |
| κz       | 0  | 25  | 0  | 9       | 6   | 0       | 6   | 4      | 0  | 1  | 3       | 5        | 0  | 2   | 1    | 1   | 1        | 1   | 3       | 3   | 0  | 0   | 0  | 0   | 1      | 92  | 1628 | 1  | 0  | 0  | 1  | 3      | KZ       |
| LI       | 0  | 0   | 0  | 0       | 2   | 1       | 1   | 6      | 0  | 0  | 4       | 10       | 1  | 1   | 0    | 1   | 1        | 2   | 0       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 18 | 0  | 1  | 0  | 1      |          |
| LU       | 0  | -0  | 0  | -0      | 0   | 0       | 0   | 0      | 0  | -0 | 0       | 2        | 0  | 0   | 0    | 0   | 1        | 0   | -0      | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 0  | 1  | 0  | 0  | 0      | LU       |
|          | 0  | 0   | 0  | 0       | 2   | 0       | 1   | 5      | 0  | 0  | 3       | 1        | 1  | 2   | 0    | 2   | 1        | 2   | 0       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 9  | 0  | 1  | 0  | 0      |          |
|          | 0  | 0   | 0  | 0       | 2   | 0       | 2   | 1      | 0  | 0  | 1       | 1        | 0  | 0   | 1    | 0   | 0        | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 1    | 0  | 0  | 0  | 9  | 25     | ME       |
| ME       | 2  | 0   | 0  | 0       | 9   | 0       | 1   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 1    | 0   | 0        | 0   | 0       | 10  | 0  | 0   | 0  | 0   | 2      | 0   | 0    | 0  | 0  | 0  | 0  | 35     | ME       |
| MK       | 2  | 0   | 0  | 0       | 2   | 0       | 3   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 0       | 12  | 0  | 0   | 0  | 0   | 1      | 0   | 0    | 0  | 0  | 0  | 0  | 1      | MK       |
|          | 0  | -0  | 0  | -0      | 0   | 0       | 0   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 0    | 0   | 10       | 10  | -0      | 0   | 0  | 0   | 0  | 0   | 0      | -0  | 0    | 0  | 0  | 0  | 0  | 0      |          |
| NL       | 0  | 0   | 0  | -0      | 0   | 25      | 0   | 0      | 0  | -0 | 1       | 31       | 0  | 0   | 1    | 0   | 10       | 10  | -0      | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | NL       |
| NO       | 0  | 0   | 0  | 0       | 0   | 2       | 0   | 10     | 0  | 0  | 3       | 19       | 2  | 1   | 1    | 2   | 3        | 12  | 0       | 0   | 0  | 0   | 1  | 1   | 0      | 0   | 0    | 1  | 0  | 0  | 0  | 0      | NO       |
|          | 0  | 0   | 3  | 0       | 20  | 5       | 3   | 10     | 0  | 0  | 81      | 103      | 3  | 2   | 3    | 1   | 8        | 8   | 0       | 1   | 1  | 5   | 0  | 0   | 2      | 0   | 1    | 3  | 0  | 0  | 1  | 3      |          |
| PI       | 0  | 0   | 0  | 0       | 0   | 0       | 0   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 14   | 0   | 0        | 0   | -0      | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 0  | 0  | 0  | 0  | 0      | PI       |
| RU       | 2  | 0   | 1  | 0       | 47  | 0       | 53  | 2      | 0  | 0  | 9       | 11       | 0  | 0   | 2    | 0   | 1        | 1   | 0       | 8   | 2  | 8   | 0  | 0   | 5      | 0   | 2    | 0  | 0  | 0  | 4  | 11     | RU       |
| RS       | 3  | 0   | 1  | 0       | 69  | 0       | 13  | 0      | 0  | 0  | 4       | 4        | 0  | 0   | 1    | 0   | 1        | 0   | 0       | 6   | 2  | 4   | 0  | 0   | 3      | 0   | 0    | 0  | 0  | 0  | 0  | 44     | RS       |
| RU       | 1  | 23  | 2  | 14      | 44  | 4       | 33  | 79     | 0  | 1  | 32      | /5       | 4  | 69  | 5    | 49  | 1        | 14  | ð       | 11  | 1  | 4   | 1  | 1   | 4      | 8   | 1101 | 14 | 0  | 4  | 0  | 13     | RU       |
| SE       | 0  | 0   | 0  | 0       | 1   | 3       | 0   | 3      | 0  | 0  | 10      | 41       | 0  | 4   | 1    | 10  | 4        | 11  | 0       | 0   | 0  | 0   | 0  | 0   | 0      | 0   | 0    | 3  | 0  | 1  | 0  | 0      | SE       |
| SI       | 0  | 0   | 2  | 0       | 1   | 0       | 0   | 0      | 0  | 0  | 2       | 2        | 0  | 0   | 1    | 0   | 1        | 0   | 0       | 0   | 5  | 0   | 0  | 0   | 4      | 0   | 0    | 0  | 0  | 0  | 0  | 1      | SI       |
| SK       | 0  | 0   | 2  | 0       | 15  | 0       | 2   | 0      | 0  | 0  | 15      | 9        | 0  | 0   | 1    | 0   | 1        | 0   | 0       | 1   | 1  | 8   | 0  | 0   | 1      | 0   | 0    | 0  | 0  | 0  | 0  | 2      | SK       |
| IJ       | 0  | 1   | -0 | 0       | 0   | 0       | 0   | 0      | -0 | 0  | 0       | 0        | 0  | 0   | -0   | 0   | -0       | 0   | 0       | 0   | -0 | 0   | -0 | 0   | 0      | 3   | 1    | 0  | -0 | 0  | 0  | 0      | IJ       |
|          | 0  | 0   | 0  | 3       | 0   | 0       | 0   | 0      | -0 | 1  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 1       | 0   | 0  | 0   | -0 | 0   | 0      | 0   | 25   | 0  | 0  | 0  | 0  | 0      |          |
| IR       | 1  | 19  | 0  | 1       | 11  | 0       | 22  | 1      | 0  | 13 | 2       | 3        | 0  | 0   | 3    | 0   | 1        | 0   | 1       | 19  | 0  | 1   | 0  | 0   | (      | 0   | 3    | 0  | 0  | 0  | 1  | 4      | IR       |
| UA       | 1  | 1   | 2  | 1       | 33  | 1       | 28  | 30     | 0  | 0  | 29      | 38       | 1  | 3   | 4    | 2   | 3        | 3   | 1       | 8   | 2  | 9   | 0  | 0   | 5      | 0   | 14   | 3  | 0  | 0  | 11 | 9      | UA       |
| UZ       | 0  | 5   | 0  | 2       | 0   | 0       | 0   | 0      | 0  | 0  | 0       | 0        | 0  | 0   | 0    | 0   | 0        | 0   | 1       | 0   | 0  | 0   | 0  | 0   | 0      | 15  | 44   | 0  | 0  | 0  | 0  | 0      | UZ       |
| AIL      | 0  | 0   | 1  | 0       | 3   | 16      | 1   | 4      | 1  | 0  | 15      | 94       | 3  | 8   | 229  | 15  | 58       | 184 | 0       | 0   | 0  | 0   | 26 | 158 | 2      | 0   | 25   | 2  | 0  | 0  | 0  | 1      | AIL      |
| BAS      | 0  | 0   | 1  | 0       | 4   | 5       | 1   | 6      | 0  | 0  | 21      | 84       | 10 | 18  | 2    | 33  | 6        | 14  | 0       | 0   | 0  | 1   | 1  | 0   | 0      | 0   | 1    | 9  | 0  | 2  | 0  | 1      | BAS      |
| RES      | 1  | 3   | 1  | 1       | 23  | 0       | 50  | 6      | 0  | 2  | 9       | 13       | 0  | 1   | 2    | 1   | 1        | 1   | 9       | 17  | 1  | 3   | 0  | 0   | 4      | 0   | 6    | 1  | 0  | 0  | 6  | 8      | RES      |
| MED      | 19 | 1   | 3  | 0       | 153 | 2       | 58  | 1      | 2  | 24 | 17      | 28       | 0  | 0   | 178  | 0   | 81       | 5   | 0       | 90  | 14 | 3   | 0  | 0   | 234    | 0   | 1    | 0  | 0  | 0  | 1  | 41     | MED      |
| NOS      | 0  | 0   | 1  | 0       | 1   | 32      | 0   | 2      | 0  | 0  | 16      | 132      | 8  | 1   | 15   | 2   | 63       | 232 | 0       | 0   | 0  | 1   | 6  | 3   | 1      | 0   | 0    | 1  | 0  | 0  | 0  | 0      | NOS      |
| AST      | 0  | 28  | 0  | 26      | 2   | 0       | 3   | 1      | 0  | 9  | 1       | 1        | 0  | 0   | 1    | 0   | 0        | 0   | 4       | 4   | 0  | 0   | 0  | 0   | 1      | 25  | 244  | 0  | 0  | 0  | 0  | 1      | AST      |
| NOA      | 1  | 0   | 0  | 0       | 6   | 1       | 2   | 0      | 0  | 1  | 2       | 4        | 0  | 0   | 33   | 0   | 7        | 1   | 0       | 3   | 1  | 0   | 0  | 0   | 12     | 0   | 0    | 0  | 0  | 0  | 0  | 2      | NOA      |
| SUM      | 77 | 217 | 71 | 91      | 958 | 211     | 508 | 275    | 32 | 59 | 573     | 1760     | 51 | 146 | 1011 | 196 | 698      | 888 | 68      | 307 | 75 | 115 | 68 | 220 | 553    | 263 | 3217 | 77 | 5  | 17 | 44 | 239    | SUM      |
| EXC      | 56 | 184 | 64 | 64      | 765 | 153     | 393 | 255    | 29 | 23 | 492     | 1404     | 30 | 116 | 551  | 145 | 482      | 450 | 55      | 193 | 59 | 106 | 35 | 59  | 298    | 238 | 2940 | 63 | 4  | 15 | 36 | 187    | EXC      |
| EU       | 10 | 0   | 57 | 0       | 270 | 144     | 275 | 35     | 13 | 4  | 402     | 1224     | 23 | 38  | 529  | 88  | 454      | 415 | 0       | 126 | 49 | 82  | 34 | 3   | 262    | 0   | 6    | 39 | 4  | 10 | 7  | 54     | EU       |
| emis     | 77 | 194 | 69 | 90      | 957 | 212     | 525 | 279    | 31 | 82 | 575     | 1779     | 51 | 149 | 1090 | 199 | 702      | 896 | 64      | 345 | 74 | 115 | 69 | 248 | 582    | 264 | 3571 | 77 | 5  | 17 | 45 | 253    | emis     |
|          | AL | ΑМ  | AΓ | ΑZ      | ВA  | ВE      | ВG  | ВY     | CH | CΥ | CZ      | DE       | DΚ | ЕĒ  | ES   | FL  | ۲R       | GB  | GE      | GR  | НŔ | ΗU  | ΙĒ | IS  | ПГ     | КG  | ΚZ   | LΓ | LU | LV | MD | ME     |          |

Table C.1 Cont.: 2016 country-to-country blame matrices for **oxidised sulphur** deposition. Units: 100 Mg of S. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|            | MK         | МT      | NL        | NO       | PL        | PΤ         | RO         | RS        | RU           | SE       | SI       | SK        | ТJ        | ТΜ       | TR           | UA           | UZ     | ATL     | BAS      | BLS        | MED         | NOS      | AST    | NOA         | BIC    | DMS          | VOL          | SUM      | EXC           | EU       |            |
|------------|------------|---------|-----------|----------|-----------|------------|------------|-----------|--------------|----------|----------|-----------|-----------|----------|--------------|--------------|--------|---------|----------|------------|-------------|----------|--------|-------------|--------|--------------|--------------|----------|---------------|----------|------------|
| AL         | 11         | 0       | 0         | 0        | 1         | 0          | 0          | 14        | 0            | 0        | 0        | 0         | 0         | 0        | 6            | 2            | 0      | 0       | 0        | 0          | 9           | 0        | 0      | 12          | 7      | 3            | 50           | 172      | 90            | 15       | AL         |
| AM         | 0          | 0       | 0         | 0        | 0         | 0          | 0          | 0         | 1            | 0        | 0        | 0         | 0         | 0        | 44           | 0            | 0      | 0       | 0        | 0          | 1           | 0        | 90     | 3           | 14     | 0            | 5            | 231      | 118           | 1        | АМ         |
| AT         | 0          | 0       | 0         | 0        | 23        | 0          | 1          | 19        | 1            | 0        | 2        | 2         | 0         | 0        | 2            | 2            | 0      | 0       | 0        | 0          | 2           | 0        | 0      | 3           | 6      | 1            | 5            | 181      | 163           | 128      | AT         |
| AZ         | 0          | 0       | 0         | 0        | 0         | 0          | 0          | 0         | 8            | 0        | 0        | 0         | 0         | 0        | 48           | 5            | 0      | 0       | 0        | 0          | 1           | 0        | 195    | 4           | 25     | 1            | 8            | 356      | 122           | 2        | ΑZ         |
| BA         | 1          | 0       | 0         | 0        | 10        | 0          | 3          | 109       | 1            | 0        | 0        | 2         | 0         | 0        | 4            | 5            | 0      | 0       | -0       | 0          | 6           | 0        | 0      | 12          | 8      | 2            | 20           | 528      | 479           | 40       | ΒA         |
| BE         | 0          | 0       | 5         | 0        | 1         | 0          | 0          | 0         | 0            | 0        | 0        | 0         | -0        | -0       | 0            | 0            | -0     | 1       | 0        | 0          | 0           | 2        | 0      | 1           | 2      | 3            | 0            | 106      | 98            | 97       | BE         |
| BG         | 20         | 0       | 0         | 0        | 9         | 0          | 25         | 63        | 8            | 0        | 0        | 1         | 0         | 0        | 82           | 30           | 0      | 0       | 0        | 3          | 10          | 0        | 3      | 14          | 17     | 2            | 43           | 560      | 468           | 244      | BG         |
| RV         | 20         | 0       | 1         | 0        | 1/0       | 0          | 0          | 25        | 68           | 1        | 0        | 2         | 0         | 0        | 16           | 106          | _0     | 1       | 1        | 1          | 20          | 1        | 2      | 5           | 11     | 2            | 14           | 623      | 582           | 216      | RV         |
| СЦ         | 2          | 0       | 0         | 0        | 140       | 0          | 0          | 2J<br>1   | 00           | 0        | 0        | 0         | 0         | 0        | 40           | 100          | -0     | 0       | 0        | 0          | 2           | 0        | 2      | 3           | 2      | 1            | 14           | 50<br>50 | 10            | 210      | СЦ         |
| cv         | 0          | 0       | 0         | 0        | 2         | 0          | 0          | 1         | 0            | 0        | 0        | 0         | 0         | 0        | 15           | 0            | 0      | 0       | 0        | 0          | 2           | 0        | 1      | ງ<br>ງ      | ງ<br>ງ | 1            | 2            | 20       | 10            | 24       | cv         |
| CT         | 0          | 0       | 1         | 0        | 66        | 0          | 0          | 20        | 1            | 0        | 1        | 0         | 0         | 0        | 15           | 2            | 0      | 0       | 0        | 0          | 1           | 0        | 4      | 2           | 2      | 1            | 2            | 220      | 200           | 4<br>204 | CT         |
|            | 0          | 0       | 20        | 0        | 00        | 1          | 2          | 20        | 1            | 0        | 1        | 4         | 0         | 0        | 1            | 3            | 0      | 0       | 1        | 0          | 1           | 0        | 0      | 2           | 10     | 10           | 2            | 1006     | 320           | 1005     |            |
| DE         | 0          | 0       | 22        | 0        | 89        | 1          | 1          | 11        | 4            | 0        | 0        | 2         | 0         | 0        | 1            | 4            | -0     | 0       | 1        | 0          | 3           | 6        | 0      | 0           | 19     | 10           | 3            | 1096     | 1034          | 1005     | DE         |
| DK         | 0          | 0       | 2         | 0        | 12        | 0          | 0          | 1         | 2            | 0        | 0        | 0         | 0         | 0        | 0            | 1            | -0     | 1       | 1        | 0          | 0           | 1        | 0      | 0           | 2      | 0            | 0            | 73       | 61            | 50       |            |
| EE         | 0          | 0       | 0         | 0        | 13        | 0          | 0          | 2         | 12           | 1        | 0        | 0         | -0        | 0        | 1            | 4            | -0     | 0       | 1        | 0          | 0           | 0        | 0      | 0           | 2      | 2            | 0            | 70       | 64            | 42       | EE         |
| ES         | 0          | 0       | 0         | 0        | 2         | 19         | 0          | 1         | 0            | 0        | 0        | 0         | -0        | -0       | 0            | 0            | -0     | 41      | 0        | 0          | 62          | 0        | 0      | 79          | 54     | 28           | 4            | 683      | 415           | 412      | ES         |
| FI         | 0          | 0       | 1         | 2        | 31        | 0          | 1          | 5         | 87           | 9        | 0        | 1         | 0         | 0        | 5            | 12           | -0     | 2       | 2        | 0          | 0           | 1        | 0      | 1           | 9      | 14           | 2            | 301      | 269           | 151      | FI         |
| FR         | 0          | 0       | 6         | 0        | 13        | 4          | 0          | 6         | 2            | 0        | 0        | 1         | 0         | 0        | 2            | 1            | 0      | 37      | 0        | 0          | 41          | 7        | 0      | 49          | 47     | 44           | 14           | 802      | 563           | 545      | FR         |
| GB         | 0          | 0       | 4         | 0        | 6         | 1          | 0          | 0         | 2            | 0        | 0        | 0         | 0         | 0        | 0            | 1            | -0     | 28      | 0        | 0          | 1           | 5        | 0      | 1           | 19     | 37           | 0            | 445      | 353           | 348      | GB         |
| GE         | 0          | 0       | 0         | 0        | 1         | 0          | 1          | 2         | 7            | 0        | 0        | 0         | 0         | 0        | 121          | 8            | 0      | 0       | 0        | 2          | 2           | 0        | 89     | 5           | 20     | 1            | 12           | 329      | 198           | 4        | GE         |
| GL         | 0          | 0       | 0         | 0        | 0         | 0          | 0          | 0         | 1            | 0        | 0        | 0         | 0         | 0        | 0            | 0            | 0      | 0       | 0        | 0          | 0           | 0        | 0      | 0           | 8      | 2            | 0            | 12       | 2             | 0        | GL         |
| GR         | 20         | 0       | 0         | 0        | 5         | 0          | 5          | 34        | 4            | 0        | 0        | 1         | 0         | 0        | 114          | 15           | 0      | 0       | 0        | 2          | 41          | 0        | 6      | 46          | 31     | 11           | 100          | 580      | 342           | 140      | GR         |
| HR         | 1          | 0       | 0         | 0        | 12        | 0          | 3          | 82        | 1            | 0        | 2        | 2         | 0         | 0        | 4            | 5            | 0      | 0       | 0        | 0          | 14          | 0        | 0      | 14          | 9      | 4            | 21           | 298      | 235           | 76       | HR         |
| HU         | 5          | 0       | 0         | 0        | 35        | 0          | 21         | 134       | 2            | 0        | 1        | 15        | 0         | 0        | 8            | 10           | 0      | 0       | 0        | 0          | 4           | 0        | 0      | 8           | 8      | 1            | 14           | 413      | 376           | 163      | HU         |
| IE         | 0          | 0       | 0         | 0        | 1         | 0          | 0          | 0         | 0            | 0        | 0        | 0         | -0        | 0        | 0            | 0            | -0     | 8       | 0        | 0          | 0           | 1        | 0      | 1           | 7      | 17           | 0            | 76       | 42            | 41       | IE         |
| IS         | 0          | 0       | 0         | 0        | 0         | 0          | 0          | 0         | 0            | 0        | 0        | 0         | 0         | 0        | 0            | 0            | 0      | 2       | -0       | 0          | 0           | 0        | 0      | 0           | 6      | 12           | 0            | 78       | 57            | 3        | IS         |
| IT         | 3          | 0       | 0         | 0        | 12        | 1          | 2          | 37        | 2            | 0        | 2        | 1         | 0         | 0        | 13           | 8            | 0      | 3       | 0        | 0          | 101         | 0        | 1      | 90          | 46     | 24           | 286          | 955      | 404           | 304      | IT         |
| KG         | 0          | 0       | 0         | 0        | 0         | -0         | 0          | 0         | 4            | 0        | -0       | 0         | 12        | 1        | 13           | 1            | 28     | 0       | 0        | 0          | 0           | 0        | 169    | 1           | 68     | 0            | 6            | 466      | 220           | 0        | KG         |
| ΚZ         | 3          | 0       | 0         | 0        | 19        | 0          | 5          | 13        | 659          | 0        | 0        | 1         | 10        | 12       | 265          | 193          | 36     | 0       | 0        | 2          | 5           | 0        | 1074   | 16          | 352    | 4            | 67           | 4535     | 3013          | 50       | ΚZ         |
| LT         | 0          | 0       | 0         | 0        | 48        | 0          | 2          | 6         | 13           | 1        | 0        | 1         | 0         | 0        | 2            | 14           | -0     | 0       | 0        | 0          | 0           | 0        | 0      | 1           | 3      | 2            | 2            | 148      | 138           | 93       | LT         |
| 10         | 0          | 0       | 0         | 0        | 0         | 0          | 0          | 0         | 0            | 0        | 0        | 0         | -0        | 0        | 0            | 0            | 0      | 0       | 0        | 0          | 0           | 0        | 0      | 0           | 0      | 0            | 0            | 5        | 5             | 5        | 10         |
| IV         | 0          | 0       | 0         | 0        | 27        | 0          | 1          | 4         | 13           | 1        | 0        | 1         | 0         | 0        | 3            | g            | 0      | 0       | 1        | 0          | 0           | 0        | 0      | 1           | °<br>3 | 3            | 1            | 111      | 102           | 66       | IV         |
| MD         | 1          | 0<br>0  | 0         | 0        |           | 0          | 6          | 5         | -0           | 0        | 0        | 0         | 0         | 0        | 16           | 32           | 0<br>0 | 0       | 0        | 1          | 1           | 0        | 0<br>0 | 2           | 2      | 0            | 3            | 101      | 01            | 20       | MD         |
| ME         | 1          | 0       | 0         | 0        | 1         | 0          | 0          | 14        | 0            | 0        | 0        | 0         | 0         | 0        | 20           | 1            | 0      | 0       | _0       | 1          | 1           | 0        | 0      | 6           | 2      | 1            | 16           | 101      | 71            | 20       | ME         |
| MK         | 63         | 0       | 0         | 0        | 2         | 0          | 1          | 19        | 1            | 0        | 0        | 0         | 0         | 0        | 12           | 3            | 0      | 0       | -0       | 0          | -<br>-      | 0        | 0      | 4           | 1      | 1            | 14           | 1/10     | 122           | 20       | MK         |
| мт         | 05         | 0       | 0         | 0        | 2         | 0          | 1          | 10        | 1            | 0        | 0        | 0         | -0        | 0        | 12           | 0            | 0      | 0       | 0        | 0          | 2           | 0        | 0      | 4           | 4      | 1            | 14           | 140      | 122           | 20       | мт         |
|            | 0          | 0       | 20        | 0        | 2         | 0          | 0          | 0         | 0            | 0        | 0        | 0         | -0        | -0       | 0            | 0            | -0     | 0       | 0        | 0          | 0           | 0        | 0      | 1           | 0      | U<br>F       | 0            | 120      | 115           | 112      |            |
|            | 0          | 0       | 32        | 0<br>25  | 10        | 0          | 0          | 0         | 17           | 2        | 0        | 0         | -0        | 0        | 0            | 2            | -0     | 12      | 1        | 0          | 0           | 4<br>F   | 0      | 1           | 10     | 10           | 0            | 129      | 110           | 115      |            |
| NU         | 0          | 0       | 2         | 25       | 1102      | 0          | 0          | 0         | 17           | 3        | 0        | 15        | 0         | 0        | 10           | 3            | 0      | 13      | 1        | 0          | 0           | 5        | 0      | 0           | 18     | 48           | 10           | 197      | 111           | 03       | NU         |
| PL         | 2          | 0       | 3         | 1        | 1103      | 0          | 11         | 57        | 21           | 1        | 1        | 15        | 0         | 0        | 13           | 48           | -0     | 2       | 0        | 0          | 3           | 0        | 1      | 1           | 17     | 9            | 13           | 1057     | 1604          | 1427     | PL         |
| PI         | 0          | 0       | 0         | 0        | 0         | 50         | 0          | 0         | 0            | 0        | 0        | 0         | 0         | 0        | 0            | 0            | 0      | 20      | 0        | 0          | 3           | 0        | 0      | 10          | 12     | 12           | 0            | 128      | /1            | /1       | PI         |
| RO         | 18         | 0       | 0         | 0        | 44        | 0          | 240        | 165       | 18           | 0        | 0        | 6         | 0         | 0        | 97           | 81           | 0      | 1       | 0        | 5          | 10          | 0        | 3      | 25          | 29     | 3            | 47           | 969      | 847           | 394      | RO         |
| RS         | 34         | 0       | 0         | 0        | 14        | 0          | 17         | 532       | 2            | 0        | 0        | 3         | 0         | 0        | 17           | 10           | 0      | 0       | 0        | 0          | 5           | 0        | 0      | 13          | 14     | 2            | 27           | 847      | 786           | 75       | RS         |
| RU         | 16         | 0       | 3         | 4        | 300       | 0          | 36         | 97        | 7142         | 11       | 1        | 9         | 2         | 4        | 797          | 1309         | 5      | 12      | 5        | 19         | 21          | 3        | 459    | 44          | 1307   | 122          | 163          | 13582    | 11427         | 695      | RU         |
| SE         | 0          | 0       | 3         | 6        | 58        | 0          | 1          | 2         | 33           | 32       | 0        | 1         | 0         | -0       | 0            | 14           | -0     | 4       | 3        | 0          | 0           | 2        | 0      | 1           | 15     | 21           | 1            | 296      | 248           | 188      | SE         |
| SI         | 0          | 0       | 0         | 0        | 4         | 0          | 1          | 14        | 0            | 0        | 8        | 1         | 0         | -0       | 1            | 1            | -0     | 0       | 0        | 0          | 4           | 0        | 0      | 2           | 2      | 1            | 4            | 67       | 54            | 30       | SI         |
| SK         | 1          | 0       | 0         | 0        | 47        | 0          | 7          | 44        | 1            | 0        | 0        | 34        | 0         | 0        | 4            | 6            | 0      | 0       | 0        | 0          | 2           | 0        | 0      | 3           | 4      | 1            | 6            | 220      | 203           | 129      | SK         |
| ΤJ         | 0          | 0       | 0         | 0        | 0         | -0         | 0          | 0         | 2            | 0        | -0       | 0         | 49        | 1        | 7            | 0            | 7      | 0       | 0        | 0          | 0           | 0        | 125    | 1           | 81     | 0            | 3            | 288      | 77            | 0        | ТJ         |
| ТМ         | 0          | 0       | 0         | 0        | 1         | 0          | 0          | 1         | 17           | 0        | 0        | 0         | 2         | 20       | 49           | 8            | 5      | 0       | 0        | 0          | 1           | 0        | 765    | 6           | 190    | 1            | 13           | 1115     | 140           | 2        | ТΜ         |
| TR         | 8          | 0       | 0         | 0        | 10        | 0          | 11         | 34        | 21           | 0        | 0        | 1         | 0         | 0        | 3954         | 45           | 0      | 1       | 0        | 13         | 80          | 0        | 1163   | 158         | 259    | 20           | 200          | 6093     | 4200          | 94       | TR         |
| UA         | 9          | 0       | 1         | 0        | 245       | 0          | 49         | 89        | 169          | 1        | 1        | 12        | 0         | 0        | 359          | 1245         | 0      | 1       | 0        | 13         | 16          | 1        | 29     | 32          | 48     | 6            | 63           | 2633     | 2423          | 448      | UA         |
| UZ         | 0          | 0       | 0         | 0        | 1         | 0          | 0          | 1         | 21           | 0        | 0        | 0         | 13        | 7        | 42           | 10           | 51     | 0       | 0        | 0          | 1           | 0        | 448    | 4           | 149    | 0            | 13           | 832      | 216           | 3        | UZ         |
| ATL        | 0          | 0       | 11        | 25       | 60        | 88         | 1          | 7         | 642          | 9        | 0        | 1         | 0         | 0        | 12           | 32           | -0     | 1217    | 2        | 0          | 40          | 23       | 6      | 220         | 2437   | 3869         | 8            | 9559     | 1738          | 826      | ATL        |
| BAS        | 0          | 0       | 4         | 2        | 159       | 0          | 2          | 10        | 78           | 20       | 0        | 3         | 0         | 0        | 2            | 29           | -0     | 3       | 17       | 0          | 1           | 3        | 0      | 2           | 20     | 39           | 3            | 621      | 532           | 397      | BAS        |
| BLS        | 14         | 0       | 0         | 0        | 62        | 0          | 49         | 80        | 105          | 0        | 0        | 4         | 0         | 0        | 1262         | 332          | 0      | 1       | 0        | 99         | 36          | 0        | 99     | 47          | 89     | 5            | 104          | 2562     | 2080          | 225      | BLS        |
| MED        | 41         | 6       | 1         | 0        | 59        | 7          | 22         | 191       | 13           | 0        | 2        | 5         | 0         | 0        | 1762         | 47           | -0     | 29      | 0        | 8          | 1721        | 1        | 566    | 1475        | 503    | 546          | 1397         | 9364     | 3118          | 843      | MED        |
| NOS        | 0          | n       | 35        | 12       | 77        | 1          |            | 4         | 16           | 3        | 0        | 2         | 0         | n        | 1            | 11           | n      | 41      | 2        | n          | 2.21        | 64       | 000    | 3           | 58     | 208          |              | 1062     | 682           | 631      | NOS        |
| Δςτ        | 2          | n       | 0         | 0        | יי<br>ج   | n i        | 2          | 7         | 108          | n        | n        | 0         | 11        | 10       | 504          | 65           | 10     | 0       | ے<br>م   | 2          | 26          | ۰<br>۱   | 10516  | 145         | 4637   | 12           | 100          | 16516    | 1070          | 30       | <u>дст</u> |
|            | 2<br>2     | n<br>0  | 0         | 0        | Л         | 6          | 2<br>1     | ı<br>Q    | 100          | n<br>N   | n        | ٥<br>٥    | 0         | 10       | JU4<br>/17   | 2            | 10     | 0<br>27 | n<br>N   | 2<br>م     | 20<br>01    | n<br>N   | 10010  | 1332        | 200    | 3V<br>17     | 23<br>700    | 2102     | 1/7           | 50<br>70 |            |
| SUM        | 281        | Q       | 1/1       | 70       | 4<br>2825 | 126        | т<br>5//   | 0<br>1070 | 0335         | 06       | 26       | U<br>137  | 00        | БЛ       | 0762         | ט<br>גדדג    | 1/2    | 1510    | 30       | 170        | 236E<br>21  | 121      | 15830  | 1000        | 11109  | 521 <i>1</i> | 2038         | 2103     | 141           | 10       | SUM        |
| EAU        | 204<br>224 | 0       | 00<br>141 | 19       | 2000      | 700<br>700 | 744<br>725 | 1664      | 2270<br>2272 | 90<br>90 | 20<br>22 | 101       | 88<br>22  | )+<br>/F | 6171         | 3722         | 120    | 101     | 59<br>17 | 511<br>211 | 160         | 10       | 12028  | J929<br>700 | 2070   | 5214         | 29J0<br>1070 | 03047    | 33300         | 8350     | 50IVI      |
| EUL        | 224<br>70  | 1       | 00<br>Q1  | 10       | 1664      | oc<br>oc   | 400<br>205 | 7004      | 0313         | 03<br>A6 | 22<br>20 | 20        | 00        | 40       | 360<br>0111  | 0200<br>0200 | 1.75   | 150     | 10       | 10         | 207         | 40<br>20 | 10     | 260         | 2910   | 001<br>071   | 1213<br>670  |          | 20200<br>2601 | 0220     | EII        |
| LU<br>0m:- | 202        | 1<br>10 | 140       | 1U<br>70 | 2000      | 0∠<br>224  | 520<br>520 | 2041      | 10402        | 40<br>0F | ∠∪<br>ว⊑ | 09<br>126 | 0         | 60       | 300<br>11255 | 2000         | 144    | 109     | 10       | 170        | 3U1<br>2771 | 120      | 70600  | 203         | 512    | 11050        | J12<br>171   | 10/107   | 0021          | 11600    | EU         |
| emis       | 293        | 10      | 140       | 10       | 2908      | 234        | 530        | 2041      | 10402        | 95       | 23<br>C' | 130       | 92<br>T ! | 02       | 11200        | 2090         | 144    | 1//3    | 40       | 1/9        | 2//1        | 132      | 20000  | 0009        | U      | 11320        | 4/15         | 10419/   | 40029         | 11098    | emis       |
|            | WK         | IVI I   | ИL        | NΟ       | ۲L        | ۲I         | кU         | ĸS        | KU           | ЪÈ       | 21       | эĸ        | IJ        | IVI      | ١K           | UA           | υZ     | AIL     | ва2      | RF2        | IVIED       | NOS      | AST    | INOA        | RIC    | DNI2         | VUL          | SOM      | EXC           | ΕU       |            |

Table C.2: 2016 country-to-country blame matrices for **oxidised nitrogen** deposition. Units: 100 Mg of N. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|      | AL         | AM         | AT         | ΑZ           | ΒA        | BE        | BG         | ΒY        | СН         | CY      | CZ         | DE           | DK  | EE       | ES         | FI         | FR      | GB           | GE        | GR         | HR         | ΗU         | IE        | IS         | IT         | KG      | ΚZ          | LT  | LU         | LV       | MD       | ME        |      |
|------|------------|------------|------------|--------------|-----------|-----------|------------|-----------|------------|---------|------------|--------------|-----|----------|------------|------------|---------|--------------|-----------|------------|------------|------------|-----------|------------|------------|---------|-------------|-----|------------|----------|----------|-----------|------|
| AL   | 18         | 0          | 0          | 0            | 1         | 0         | 1          | 0         | 0          | 0       | 0          | 1            | 0   | 0        | 2          | 0          | 1       | 0            | 0         | 8          | 1          | 1          | 0         | 0          | 12         | -0      | 0           | 0   | 0          | 0        | 0        | 1         | AL   |
| AM   | 0          | 13         | 0          | 6            | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 0            | 2         | 0          | 0          | 0          | 0         | 0          | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | AM   |
| AT   | 0          | 0          | 120        | 0            | 1         | 5         | 0          | 0         | 11         | 0       | 19         | 99           | 0   | 0        | 2          | 0          | 18      | 5            | 0         | 0          | 3          | 7          | 0         | 0          | 29         | 0       | 0           | 0   | 1          | 0        | 0        | 0         | AT   |
| ΑZ   | 0          | 5          | 0          | 66           | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 0            | 12        | 0          | 0          | 0          | 0         | 0          | 0          | 0       | 4           | 0   | 0          | 0        | 0        | 0         | ΑZ   |
| BA   | 1          | 0          | 6          | 0            | 20        | 1         | 1          | 0         | 0          | 0       | 5          | 9            | 0   | 0        | 4          | 0          | 3       | 1            | 0         | 1          | 8          | 9          | 0         | 0          | 20         | -0      | 0           | 0   | 0          | 0        | 0        | 2         | BA   |
| BE   | 0          | 0          | 1          | 0            | 0         | 48        | 0          | 0         | 1          | 0       | 1          | 29           | 1   | 0        | 2          | 0          | 38      | 25           | 0         | 0          | 0          | 0          | 1         | 0          | 1          | 0       | 0           | 0   | 2          | 0        | 0        | 0         | BE   |
| BG   | 2          | 0          | 3          | 0            | 2         | 1         | 103        | 1         | 0          | 0       | 3          | 8            | 0   | 0        | 2          | 0          | 2       | 1            | 0         | 29         | 1          | 5          | 0         | 0          | 6          | 0       | 0           | 0   | 0          | 0        | 2        | 1         | BG   |
| ΒY   | 0          | 0          | 4          | 0            | 1         | 5         | 3          | 77        | 1          | 0       | 10         | 56           | 7   | 2        | 2          | 4          | 9       | 12           | 0         | 2          | 1          | 6          | 1         | 0          | 6          | 0       | 2           | 15  | 0          | 5        | 3        | 0         | BY   |
| СН   | 0          | 0          | 3          | 0            | 0         | 2         | 0          | 0         | 52         | 0       | 1          | 23           | 0   | 0        | 3          | 0          | 34      | 3            | 0         | 0          | 0          | 0          | 0         | -0         | 20         | 0       | 0           | 0   | 0          | 0        | 0        | 0         | CH   |
| CY   | 0          | 0          | 0          | 0            | 0         | 0         | 0          | 0         | 0          | 3       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 0            | 0         | 1          | 0          | 0          | 0         | 0          | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | CY   |
| CZ   | 0          | 0          | 24         | 0            | 1         | 6         | 0          | 1         | 4          | 0       | 83         | 116          | 1   | 0        | 2          | 0          | 20      | 9            | 0         | 0          | 2          | 9          | 1         | 0          | 7          | 0       | 0           | 0   | 1          | 0        | 0        | 0         | CZ   |
| DE   | 0          | 0          | 38         | 0            | 0         | 100       | 0          | 2         | 31         | 0       | 44         | 999          | 11  | 0        | 15         | 1          | 220     | 125          | 0         | 0          | 1          | 6          | 6         | 0          | 22         | 0       | 0           | 2   | 15         | 1        | 0        | 0         | DE   |
| DK   | 0          | 0          | 1          | 0            | 0         | 7         | 0          | 1         | 0          | 0       | 2          | 37           | 24  | 0        | 1          | 0          | 9       | 26           | 0         | 0          | 0          | 0          | 2         | 0          | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | DK   |
| EE   | 0          | 0          | 0          | 0            | 0         | 1         | 0          | 3         | 0          | 0       | 1          | 10           | 3   | 8        | 0          | 6          | 2       | 5            | 0         | 0          | 0          | 1          | 0         | 0          | 0          | 0       | 0           | 3   | 0          | 4        | 0        | 0         | EE   |
| ES   | 0          | 0          | 1          | 0            | 0         | 3         | 0          | 0         | 1          | 0       | 1          | 13           | 0   | 0        | 703        | 0          | 40      | 9            | 0         | 0          | 0          | 0          | 1         | 0          | 10         | 0       | 0           | 0   | 0          | 0        | 0        | 0         | ES   |
| FI   | 0          | 0          | 1          | 0            | 0         | 4         | 0          | 6         | 0          | 0       | 3          | 33           | 9   | 8        | 1          | 97         | 6       | 16           | 0         | 0          | 0          | 1          | 1         | 0          | 1          | 0       | 1           | 5   | 0          | 5        | 0        | 0         | FI   |
| FR   | 0          | 0          | 6          | 0            | 0         | 54        | 0          | 1         | 20         | 0       | 6          | 144          | 4   | 0        | 178        | 0          | 839     | 134          | 0         | 0          | 1          | 1          | 10        | 0          | 57         | 0       | 0           | 1   | 9          | 0        | 0        | 0         | FR   |
| GB   | 0          | 0          | 2          | 0            | 0         | 16        | 0          | 1         | -0         | 0       | 2          | 45           | 4   | 0        | 13         | 0          | 44      | 467          | 0         | 0          | 0          | 0          | 37        | 0          | 3          | 0       | 0           | 0   | 1          | 0        | 0        | 0         | GB   |
| GE   | 0          | 4          | 0          | 13           | 0         | 0         | 0          | 0         | 0          | 0       | 0          | .0           | 0   | 0        | -0         | 0          | 0       | 0            | 30        | 1          | 0          | 0          | 0         | 0          | 1          | 0       | 1           | 0   | 0          | 0        | 0        | 0         | GE   |
| GL   | 0          | 0          | 0<br>0     | 10           | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 1            | 0         | 0          | 0          | 0          | 0         | 0          | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | GL   |
| CP   | 3          | 0          | 1          | 0            | 1         | 0         | 25         | 1         | 0          | 0       | 1          | 4            | 0   | 0        | 5          | 0          | 3       | 1            | 0         | 1/0        | 1          | 2          | 0         | 0          | 14         | 0       | 0           | 0   | 0          | 0        | 1        | 1         | CP   |
|      | 1          | 0          | 16         | 0            | 6         | 1         | 20         | 1         | 1          | 0       | 0          | 16           | 0   | 0        | 5          | 0          | 7       | 1            | 0         | 149        | -10<br>-10 | 14         | 0         | 0          | 14         | 0       | 0           | 0   | 0          | 0        | 1        | 1         |      |
|      | 1          | 0          | 10         | 0            | 5         | 1         | 1          | 1         | 1          | 0       | 15         | 20           | 0   | 0        | 0          | 0          | 7       | 1            | 0         | 1          | 20         | 14         | 0         | 0          | 47         | 0       | 0           | 0   | 0          | 0        | 0        | 1         |      |
|      | 1          | 0          | 24         | 0            | 5         | 2         | о<br>О     | 1         | 2          | 0       | 15         | 30           | 0   | 0        | С          | 0          | 7       | 3<br>21      | 0         | 2          | 9          | 09         | 10        | 0          | 10         | 0       | 0           | 0   | 0          | 0        | 0        | 1         |      |
| IE   | 0          | 0          | 0          | 0            | 0         | 2         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 3          | 0          | 1       | 31           | 0         | 0          | 0          | 0          | 40        | 0          | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | IE   |
| 15   | 0          | 0          | 0          | 0            | 0         | 1         | 0          | 0         | 10         | 0       | 0          | 2            | 0   | 0        | 0          | 0          | 1       | 0            | 0         | 0          | 0          | 0          | 2         | 11         | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | 15   |
|      | 1          | 0          | 24         | 0            | 3         | 3         | 2          | 0         | 12         | 0       | 0          | 28           | 0   | 0        | 49         | 0          | 74      | 5            | 0         | 4          | 14         | 0          | 0         | 0          | 920        | -0      | 0           | 0   | 0          | 0        | 0        | 1         |      |
| KG   | 0          | 0          | 0          | 1            | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 0            | 0         | 0          | 0          | 0          | 0         | 0          | 0          |         | 31          | 0   | 0          | 0        | 0        | 0         | KG   |
| KZ   | 0          | 6          | 2          | 25           | 0         | 2         | 3          | 9         | 1          | 0       | 3          | 16           | 1   | 1        | 4          | 4          | 6       | 6            | 8         | 5          | 1          | 2          | 0         | 0          | 7          | 52      | 999         | 2   | 0          | 1        | 1        | 0         | KZ   |
| LI   | 0          | 0          | 1          | 0            | 0         | 3         | 0          | 9         | 0          | 0       | 4          | 25           | 5   | 1        | 0          | 2          | 4       | 8            | 0         | 0          | 0          | 2          | 1         | 0          | 1          | 0       | 0           | 21  | 0          | 4        | 0        | 0         | LI   |
| LU   | 0          | 0          | 0          | 0            | 0         | 1         | 0          | 0         | 0          | 0       | 0          | 4            | 0   | 0        | 0          | 0          | 3       | 1            | 0         | 0          | 0          | 0          | 0         | 0          | 0          | 0       | 0           | 0   | 3          | 0        | 0        | 0         | LU   |
| LV   | 0          | 0          | 1          | 0            | 0         | 2         | 0          | 7         | 0          | 0       | 2          | 20           | 5   | 3        | 0          | 4          | 3       | 8            | 0         | 0          | 0          | 1          | 1         | 0          | 1          | 0       | 0           | 10  | 0          | 13       | 0        | 0         | LV   |
| MD   | 0          | 0          | 1          | 0            | 0         | 0         | 2          | 1         | 0          | 0       | 1          | 3            | 0   | 0        | 0          | 0          | 1       | 1            | 0         | 1          | 0          | 1          | 0         | 0          | 1          | 0       | 0           | 0   | 0          | 0        | 7        | 0         | MD   |
| ME   | 2          | 0          | 0          | 0            | 1         | 0         | 0          | 0         | 0          | 0       | 0          | 1            | 0   | 0        | 1          | 0          | 1       | 0            | 0         | 1          | 0          | 1          | 0         | 0          | 6          | 0       | 0           | 0   | 0          | 0        | 0        | 7         | ME   |
| MK   | 2          | 0          | 0          | 0            | 0         | 0         | 3          | 0         | 0          | 0       | 0          | 1            | 0   | 0        | 1          | 0          | 0       | 0            | 0         | 17         | 0          | 1          | 0         | 0          | 3          | -0      | 0           | 0   | 0          | 0        | 0        | 0         | MK   |
| MT   | 0          | 0          | 0          | 0            | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 0            | 0         | 0          | 0          | 0          | 0         | 0          | 0          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | MT   |
| NL   | 0          | 0          | 1          | 0            | 0         | 24        | 0          | 0         | 0          | -0      | 1          | 37           | 1   | 0        | 2          | 0          | 24      | 43           | 0         | 0          | 0          | 0          | 2         | 0          | 1          | 0       | 0           | 0   | 1          | 0        | 0        | 0         | NL   |
| NO   | 0          | 0          | 1          | 0            | 0         | 9         | 0          | 2         | 0          | 0       | 2          | 47           | 16  | 1        | 2          | 4          | 13      | 51           | 0         | 0          | 0          | 0          | 4         | 0          | 0          | 0       | 0           | 1   | 1          | 1        | 0        | 0         | NO   |
| ΡL   | 0          | 0          | 25         | 0            | 2         | 26        | 2          | 16        | 4          | 0       | 74         | 336          | 19  | 1        | 6          | 3          | 46      | 42           | 0         | 1          | 5          | 24         | 3         | 0          | 14         | 0       | 0           | 9   | 3          | 3        | 2        | 0         | PL   |
| ΡT   | 0          | 0          | 0          | 0            | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 1            | 0   | 0        | 41         | 0          | 2       | 1            | 0         | 0          | 0          | 0          | 0         | 0          | 1          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | PT   |
| RO   | 2          | 0          | 12         | 0            | 5         | 3         | 34         | 4         | 2          | 0       | 10         | 34           | 1   | 0        | 5          | 1          | 8       | 5            | 0         | 12         | 5          | 27         | 0         | 0          | 19         | 0       | 1           | 1   | 0          | 0        | 8        | 3         | RO   |
| RS   | 4          | 0          | 6          | 0            | 8         | 1         | 10         | 1         | 1          | 0       | 5          | 13           | 0   | 0        | 3          | 0          | 3       | 2            | 0         | 10         | 4          | 16         | 0         | 0          | 13         | -0      | 0           | 0   | 0          | 0        | 0        | 6         | RS   |
| RU   | 2          | 6          | 16         | 36           | 3         | 22        | 20         | 131       | 4          | 1       | 24         | 189          | 31  | 37       | 13         | 109        | 44      | 71           | 15        | 18         | 4          | 17         | 5         | 1          | 29         | 4       | 687         | 38  | 2          | 29       | 10       | 1         | RU   |
| SE   | 0          | 0          | 2          | 0            | 0         | 13        | 0          | 6         | 1          | 0       | 8          | 99           | 41  | 4        | 2          | 20         | 18      | 49           | 0         | 0          | 0          | 2          | 4         | 0          | 1          | 0       | 0           | 6   | 1          | 5        | 0        | 0         | SE   |
| SI   | 0          | 0          | 14         | 0            | 1         | 0         | 0          | 0         | 0          | 0       | 2          | 8            | 0   | 0        | 2          | 0          | 3       | 0            | 0         | 0          | 6          | 3          | 0         | 0          | 21         | 0       | 0           | 0   | 0          | 0        | 0        | 0         | SI   |
| SK   | 0          | 0          | 11         | 0            | 2         | 1         | 1          | 1         | 1          | 0       | 15         | 24           | 1   | 0        | 1          | 0          | 4       | 2            | 0         | 1          | 3          | 20         | 0         | 0          | 7          | 0       | 0           | 0   | 0          | 0        | 0        | 0         | SK   |
| ТJ   | 0          | 0          | 0          | 0            | 0         | 0         | 0          | 0         | 0          | 0       | 0          | 0            | 0   | 0        | 0          | 0          | 0       | 0            | 0         | 0          | 0          | 0          | 0         | 0          | 0          | 2       | 4           | 0   | 0          | 0        | 0        | 0         | ТJ   |
| ТМ   | 0          | 2          | 0          | 10           | 0         | 0         | 0          | 1         | 0          | 0       | 0          | 1            | 0   | 0        | 1          | 0          | 1       | 0            | 2         | 1          | 0          | 0          | 0         | 0          | 1          | 0       | 19          | 0   | 0          | 0        | 0        | 0         | ТМ   |
| TR   | 1          | 5          | 3          | 4            | 1         | 1         | 18         | 2         | 1          | 7       | 2          | 10           | 0   | 0        | 9          | 0          | 6       | 2            | 4         | 43         | 1          | 3          | 0         | 0          | 16         | 0       | 2           | 0   | 0          | 0        | 2        | 1         | TR   |
| UA   | 1          | 0          | 15         | 3            | 3         | 8         | 20         | 40        | 3          | 0       | 28         | 100          | 7   | 2        | 8          | 4          | 19      | 15           | 2         | 13         | 5          | 30         | 1         | 0          | 22         | 0       | 9           | 8   | 1          | 4        | 18       | 1         | UA   |
| UZ   | 0          | 1          | 0          | 6            | 0         | 0         | 0          | 1         | 0          | 0       | 0          | 1            | 0   | 0        | 1          | 0          | 1       | 0            | 2         | 1          | 0          | 0          | 0         | 0          | 1          | 10      | 28          | 0   | 0          | 0        | 0        | 0         | UZ   |
| ATL  | 0          | 0          | 7          | 0            | 0         | 74        | 1          | 7         | 5          | 0       | 11         | 259          | 31  | 5        | 380        | 38         | 311     | 642          | 0         | 1          | 1          | 2          | 146       | 42         | 14         | 0       | 11          | 5   | 6          | 4        | 0        | 0         | ATL  |
| BAS  | 0          | 0          | 6          | 0            | 0         | 22        | 0          | 13        | 2          | 0       | 16         | 182          | 46  | 11       | 3          | 35         | 29      | 63           | 0         | 0          | 1          | 5          | 5         | 0          | 3          | 0       | 1           | 14  | 2          | 11       | 1        | 0         | BAS  |
| BLS  | 2          | 1          | 8          | 3            | 2         | 2         | 39         | 9         | 2          | 1       | 7          | 31           | 2   | 1        | 5          | 2          | 7       | 5            | 16        | 31         | 2          | 10         | 0         | 0          | 13         | 0       | 3           | 2   | 0          | 1        | 10       | 1         | BLS  |
| MED  | 20         | 0          | 36         | 1            | 17        | 13        | 51         | 3         | 14         | - 14    | 18         | 95           | 2   | 0        | 439        | 1          | 284     | 29           | 0         | 228        | 34         | 21         | 2         | 0          | 742        | 0       | 1           | 1   | 2          | 0        | 3        | 9         | MED  |
| NOS  | 0          | 0          | 5          | 0            | 0         | 78        | 0          | 4         | 3          | 0       | 12         | 272          | 60  | 1        | 29         | 4          | 165     | 697          | 0         | 0          | 0          | 3          | 43        | 1          | 6          | ñ       | 0           | 4   | 5          | 2        | 0        | n         | NOS  |
| AST  | 1          | 7          | 1          | 64           | n         | . 5       | 3          | 3         | 1          | 7       | 1          | -12          | 0   | n.       | 5          | 1          | -00     | 227          | Q,        | 12         | 1          | 1          | 0         | n          | 8          | 20      | 198         | 1   | n          | 0        | 1        | n<br>0    | AST  |
| NOA  | 1          | ،<br>۱     | Т          | <del>ر</del> | 1         | 2         | ך<br>ג     | ۰<br>۱    | י<br>ר     | ،<br>۱  | 2          | 12           | n   | n        | 22         | ۰<br>۱     | ۳<br>21 | 2<br>ج       | چ<br>0    | 11         | 2          | 2          | 1         | n          | 20         | 20<br>0 | 1,00        | 0   | n          | n        | ۰<br>۱   | n         | NOA  |
| SUM  | 1<br>67    | 0<br>51    | ر<br>۲۲۲   | 220          | 22        | ∠<br>568  | 3∕10       | 366       | ے<br>181   | ں<br>۲۸ | ے<br>460   | 3527         | 336 | 88       | 2050       | 3⁄13       | 2425    | 2638         | 112       | 608        | ∠<br>1⊿7   | ∠<br>२२२   | 323       | 57         | 2184       | 165     | 2003        | 152 | 58         | 96       | 73       | _<br>⊿∩   | SUM  |
| FXC  | <u>л</u> л | ۷5<br>٦٢   | 280        | 170          | 62        | 376       | 251        | 300       | 156        | 10      | 202        | 2680         | 105 | 70       | 1100       | 242        | 1505    | 1105         | 112<br>97 | 322        | 107        | 222<br>282 | 125       | ٦ <i>١</i> | 13204      | 1/15    | 1720        | 106 | <u>۵</u> ۸ | 50<br>72 | 73<br>57 | 20<br>20  | FXC  |
| FII  | +4<br>11   | 40<br>0    | 209        | 1            | 20        | 325       | 204<br>172 | 520<br>60 | 03<br>T20  | 3<br>12 | 393<br>311 | 2000         | 130 | 70<br>27 | 10/5       | 202<br>136 | 1450    | 1024         | 1         | 220<br>204 | 101<br>81  | 200<br>201 | 111       | 14         | 1202       | 140     | 1109<br>A   | 61  | 74<br>30   | 10<br>36 | 57<br>1/ | 20<br>20  | FII  |
| emic | 75         | бл<br>БЛ   | 120<br>120 | 2/12         | 29<br>QA  | 520       | 201        | 136       | 95<br>100  | ر<br>۲۷ | 501        | 2200<br>3700 | 32U | 21<br>05 | 7040       | 30ö<br>720 | 2561    | 1024<br>2797 | יד<br>115 | 204<br>7/2 | 150        | 201        | 310       | 1<br>7/    | 2217       | 182     | 4<br>2212   | 165 | 60         | 106      | 83<br>74 | \/ 2<br>U | emic |
| enns | 7.5<br>A I | <u>٦</u> 4 | +09<br>AT  | 242<br>A7    | 94<br>R ^ | 000<br>DL | DU<br>201  | +30<br>PV | 792<br>192 | 40      | 501        | 2100         | 200 | 90<br>50 | 2000<br>EC | 230        | 2001    | 2101<br>CD   | 110       | (+)<br>(P  | ПD<br>708  | 700<br>200 | J+∠<br>IГ | 14<br>10   | 2311<br>IT | 100     | 2313<br>1/7 | 102 | 00         | 111      | 00<br>ML | 40<br>ME  | enns |
|      | AL         | MIVI       | нι         | ΗL           | υA        | DE        | 90         | זט        | СП         | ιJ      | L          | DE           | υň  | ĽС       | E2         | F1         | гК      | ЪD           | чE        | אט         | лп         | 110        | ιC        | 13         | 11         | NО      | ٢٨Z         | L I | LU         | L٧       | עואו     | IVIE      |      |

Table C.2 Cont.: 2016 country-to-country blame matrices for **oxidised nitrogen** deposition. Units: 100 Mg of N. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|      | MK      | ΜT    | NL     | NO     | PL        | PΤ    | RO       | RS         | RU       | SE         | SI       | SK  | ТJ       | ТΜ       | TR   | UA      | UZ      | ATL          | BAS    | BLS      | MED     | NOS        | AST        | NOA        | BIC          | DMS          | VOL    | SUM   | EXC        | EU        |       |
|------|---------|-------|--------|--------|-----------|-------|----------|------------|----------|------------|----------|-----|----------|----------|------|---------|---------|--------------|--------|----------|---------|------------|------------|------------|--------------|--------------|--------|-------|------------|-----------|-------|
| AL   | 2       | 0     | 0      | 0      | 1         | 0     | 1        | 5          | 0        | 0          | 0        | 0   | -0       | 0        | 1    | 1       | 0       | 0            | 0      | 0        | 13      | 0          | 0          | 6          | 17           | -0           | 0      | 97    | 60         | 31        | AL    |
| AM   | 0       | 0     | 0      | 0      | 0         | 0     | 0        | 0          | 1        | 0          | 0        | 0   | 0        | 0        | 7    | 0       | 0       | 0            | 0      | 0        | 1       | 0          | 48         | 1          | 16           | -0           | 0      | 97    | 32         | 1         | AM    |
| AT   | 0       | 0     | 5      | 0      | 17        | 0     | 1        | 3          | 1        | 0          | 9        | 4   | -0       | 0        | 0    | 1       | 0       | 1            | 1      | 0        | 4       | 5          | 0          | 1          | 19           | -0           | 0      | 393   | 362        | 345       | AT    |
| AZ   | 0       | 0     | 0      | 0      | 0         | 0     | 0        | 0          | 11       | 0          | 0        | 0   | 0        | 1        | 8    | 2       | 0       | 0            | 0      | 1        | 1       | 0          | 128        | 1          | 32           | -0           | 0      | 274   | 111        | 3         | AZ    |
| BA   | 0       | 0     | 1      | 0      | 8         | 0     | 3        | 18         | 1        | 0          | 1        | 3   | -0       | 0        | 1    | 2       | 0       | 0            | 0      | 0        | 10      | 1          | 0          | 5          | 20           | -0           | -0     | 169   | 132        | 85        | BA    |
| BE   | 0       | 0     | 14     | 0      | 1         | 0     | 0        | 0          | 1        | 0          | 0        | 0   | -0       | 0        | 0    | 0       | 0       | 3            | 1      | 0        | 0       | 23         | 0          | 0          | 11           | 0            | 0      | 205   | 167        | 165       | BE    |
| BG   | 4       | 0     | 1      | 0      | 8         | 0     | 28       | 24         | 9        | 0          | 0        | 2   | 0        | 0        | 28   | 17      | 0       | 0            | 1      | 6        | 16      | 1          | 1          | 7          | 40           | -0           | 0      | 367   | 295        | 204       | BG    |
| BY   | 0       | 0     | 8      | 3      | 121       | 0     | 12       |            | 90       | 6          | 1        | 5   | 0        | 0        |      | 66      | 0<br>0  | 2            | 10     | 2        | -0      | 14         | 1          | 2          | 47           | -0           | 0      | 640   | 550        | 304       | BY    |
| СЦ   | 0       | 0     | 0<br>2 | 0      | 121       | 0     | 12       | ۰<br>۲     | 0        | 0          | 1        | 0   | 0        | 0        | 0    | 00      | 0       | 1            | 15     | 0        | 3       | ۲ <u>+</u> | 0          | 1          | 11           | 0            | 0      | 162   | 144        | 02        | СЦ    |
| cv   | 0       | 0     | 2      | 0      | 1         | 0     | 0        | 0          | 0        | 0          | 0        | 0   | 0        | 0        | 4    | 0       | 0       | 1            | 0      | 0        | 2       | 2          | 0<br>2     | 1          | 2            | -0           | -0     | 102   | 144        | 92        | cv    |
| CT   | 0       | 0     | 0      | 1      | U<br>E1   | 0     | 0        | 0          | 0        | 0          | 2        | 7   | 0        | 0        | 4    | 0       | 0       | 1            | 0      | 0        | ა<br>ე  | 0          | 2          | 1          | 10           | -0           | -0     | 401   | 260        | 255       | CT    |
|      | 0       | 0     | 0      | 1      | 51        | 0     | 2        | 4          | 2        | 0          | Э        | 1   | -0       | 0        | 0    | 2       | 0       | 14           | 2      | 0        | 2       | 120        | 0          | 1          | 10           | -0           | 0      | 401   | 1062       | 300       |       |
| DE   | 0       | 0     | 110    | 4      | 11        | 2     | 1        | 1          | 1        | 3          | 2        | 4   | 0        | 0        | 0    | 3       | 0       | 14           | 21     | 0        | 5       | 132        | 0          | 3          | 98           | 0            | 0      | 2130  | 1803       | 1814      | DE    |
| DK   | 0       | 0     | 15     | 2      | 10        | 0     | 0        | 0          | 2        | 3          | 0        | 0   | 0        | 0        | 0    | 1       | 0       | 2            | 15     | 0        | 0       | 27         | 0          | 0          | 11           | -0           | -0     | 200   | 145        | 139       | DK    |
| EE   | 0       | 0     | 2      | 1      | 12        | 0     | 0        | 0          | 16       | 5          | 0        | 0   | 0        | 0        | 0    | 3       | 0       | 1            | 17     | 0        | 0       | 5          | 0          | 0          | 8            | -0           | 0      | 119   | 88         | 64        | EE    |
| ES   | 0       | 0     | 2      | 0      | 2         | 65    | 0        | 0          | 1        | 0          | 0        | 0   | 0        | 0        | 0    | 0       | 0       | 68           | 0      | 0        | 105     | 5          | 0          | 48         | 173          | -0           | 0      | 1255  | 855        | 853       | ES    |
| FI   | 0       | 0     | 8      | 9      | 26        | 0     | 1        | 1          | 80       | 30         | 0        | 1   | 0        | 0        | 1    | 5       | 0       | 5            | 55     | 0        | 1       | 18         | 0          | 0          | 51           | -0           | -0     | 494   | 365        | 261       | FI    |
| FR   | 0       | 0     | 40     | 2      | 10        | 12    | 1        | 1          | 3        | 1          | 1        | 1   | 0        | 0        | 0    | 1       | 0       | 65           | 4      | 0        | 68      | 111        | 0          | 27         | 178          | -0           | -0     | 1991  | 1538       | 1510      | FR    |
| GB   | 0       | 0     | 25     | 4      | 5         | 2     | 0        | 0          | 3        | 2          | 0        | 0   | 0        | 0        | 0    | 1       | 0       | 45           | 4      | 0        | 2       | 86         | 0          | 1          | 81           | 0            | -0     | 897   | 679        | 669       | GB    |
| GE   | 0       | 0     | 0      | 0      | 1         | 0     | 1        | 0          | 6        | 0          | 0        | 0   | 0        | 0        | 18   | 2       | 0       | 0            | 0      | 3        | 2       | 0          | 39         | 2          | 28           | -0           | 0      | 166   | 91         | 6         | GE    |
| GL   | 0       | 0     | 0      | 0      | 0         | 0     | 0        | 0          | 1        | 0          | 0        | 0   | 0        | 0        | 0    | 0       | 0       | 0            | 0      | 0        | 0       | 0          | 0          | 0          | 19           | -0           | 0      | 24    | 3          | 2         | GL    |
| GR   | 5       | 0     | 1      | 0      | 4         | 0     | 7        | 10         | 5        | 0          | 0        | 1   | -0       | 0        | 34   | 8       | 0       | 1            | 0      | 3        | 67      | 1          | 2          | 22         | 68           | -0           | 0      | 454   | 290        | 220       | GR    |
| HR   | 0       | 0     | 1      | 0      | 9         | 0     | 3        | 15         | 1        | 0          | 6        | 4   | 0        | 0        | 1    | 2       | 0       | 1            | 0      | 0        | 22      | 1          | 0          | 7          | 22           | -0           | 0      | 255   | 200        | 173       | HR    |
| HU   | 1       | 0     | 2      | 0      | 32        | 0     | 21       | 30         | 3        | 0          | 5        | 19  | -0       | 0        | 2    | 6       | 0       | 1            | 1      | 0        | 7       | 3          | 0          | 4          | 26           | -0           | 0      | 359   | 318        | 267       | HU    |
| IE   | 0       | 0     | 3      | 0      | 1         | 1     | 0        | 0          | 0        | 0          | 0        | 0   | 0        | 0        | 0    | 0       | 0       | 11           | 0      | 0        | 0       | 9          | 0          | 0          | 24           | -0           | 0      | 142   | 96         | 95        | IE    |
| IS   | 0       | 0     | 1      | 0      | 0         | 0     | 0        | 0          | 0        | 0          | 0        | 0   | 0        | 0        | 0    | 0       | 0       | 4            | 0      | 0        | 0       | 2          | 0          | 0          | 18           | -0           | -0     | 49    | 25         | 13        | IS    |
| IT   | 1       | 0     | 3      | 0      | 9         | 3     | 2        | 6          | 2        | 0          | 17       | 2   | -0       | 0        | 2    | 3       | 0       | 5            | 0      | 0        | 173     | 4          | 0          | 50         | 128          | -0           | 0      | 1566  | 1205       | 1172      | IT    |
| KG   | 0       | 0     | 0      | 0      | 0         | 0     | 0        | 0          | 4        | 0          | 0        | 0   | 4        | 7        | 2    | 0       | 110     | 0            | 0      | 0        | 0       | 0          | 124        | 0          | 74           | -0           | 0      | 436   | 237        | 1         | KG    |
| ΚZ   | 1       | 0     | 2      | 2      | 15        | 0     | 6        | 2          | 721      | 3          | 0        | 2   | 3        | 44       | 41   | 86      | 140     | 2            | 5      | 5        | 7       | 4          | 835        | 7          | 591          | -0           | 0      | 3690  | 2234       | 94        | ΚZ    |
| LT   | 0       | 0     | 4      | 1      | 43        | 0     | 2        | 1          | 16       | 4          | 0        | 1   | -0       | 0        | 0    | 8       | 0       | 1            | 15     | 0        | 0       | 8          | 0          | 0          | 13           | -0           | -0     | 213   | 174        | 138       | LT    |
| IU   | 0       | 0     | 0      | 0      | 0         | 0     | 0        | 0          | 0        | 0          | 0        | 0   | 0        | 0        | 0    | 0       | 0       | 0            | 0      | 0        | 0       | 1          | 0          | 0          | 1            | 0            | 0      | 15    | 13         | 13        | IU    |
| IV   | 0       | 0     | 4      | 2      | 26        | 0     | 1        | 1          | 19       | 6          | 0        | 1   | 0        | 0        | 0    | 6       | 0       | 1            | 19     | 0        | 0       | 8          | 0          | 0          | 13           | -0           | 0      | 189   | 147        | 112       | IV    |
| MD   | 0       | 0     | 0      | 0      | 7         | 0     | 8        | 1          | 6        | 0          | 0        | 1   | 0        | 0        | 4    | 10      | 0       | 0            | 1      | 2        | 2       | 1          | 0          | 1          | 10<br>Q      | -0           | 0      | 83    | 60         | 30        | MD    |
| ME   | 0       | 0     | 0      | 0      | 1         | 0     | 0        | 2          | 0        | 0          | 0        | 0   | 0        | 0        | 0    | 10      | 0       | 0            | 0      | 0        | 5       | 0          | 0          | 3          | 8            | _0           | 0      | 11    | 28         | 13        | ME    |
| MK   | 1/      | 0     | 0      | 0      | 1         | 0     | 1        | 7          | 1        | 0          | 0        | 0   | 0        | 0        | 3    | 1       | 0       | 0            | 0      | 0        | J<br>4  | 0          | 0          | ງ<br>ງ     | 10           | -0           | 0      | 74    | 50         | 21        | MK    |
| МТ   | 14      | 0     | 0      | 0      | 1         | 0     | 0        | 0          | 0        | 0          | 0        | 0   | -0       | 0        | 0    | 0       | 0       | 0            | 0      | 0        | -       | 0          | 0          | 2          | 10           | -0           | 0      | 1     |            |           | МТ    |
|      | 0       | 0     | 62     | 1      | 0         | 0     | 0        | 0          | 1        | 0          | 0        | 0   | -0       | 0        | 0    | 0       | 0       | 0            | 1      | 0        | 0       | 45         | 0          | 0          | 14           | 0            | 0      | 270   | 205        | 202       |       |
|      | 0       | 0     | 10     | 76     | 10        | 0     | 0        | 0          | 10       | 14         | 0        | 0   | -0       | 0        | 0    | 1       | 0       | 4            | 17     | 0        | 0       | 40         | 0          | 0          | 14           | 0            | -0     | 270   | 205        | 205       | NL    |
| NU   | 0       | 0     | 18     | /0     | 10        | 0     | 15       | 11         | 10       | 14         | 0        | 0   | 0        | 0        | 0    | 1       | 0       | 19           | 17     | 0        | 0       | 70         | 0          | 0          | 59           | -0           | -0     | 452   | 280        | 190       | NU    |
| PL   | 0       | 0     | 34     | 5      | 022       | 1     | 15       | 11         | 29       | ð          | 5        | 25  | 0        | 0        | 2    | 29      | 0       | 5            | 40     | 1        | 5       | 50         | 0          | 3          | 70           | -0           | 0      | 1035  | 1455       | 1352      | PL    |
| PT   | 0       | 0     | 0      | 0      | 0         | 90    | 0        | 0          | 0        | 0          | 0        | 0   | 0        | 0        | 0    | 0       | 0       | 34           | 0      | 0        | 6       | 0          | 0          | 5          | 36           | 0            | -0     | 219   | 137        | 137       | PI    |
| RO   | 3       | 0     | 4      | 1      | 40        | 0     | 218      | 42         | 21       | 1          | 2        | 10  | 0        | 0        | 22   | 52      | 0       | 1            | 2      | 9        | 16      | 4          | 1          | 12         | 79           | -0           | 0      | 744   | 620        | 453       | RO    |
| RS   | 7       | 0     | 1      | 0      | 13        | 0     | 18       | 108        | 3        | 0          | 1        | 5   | -0       | 0        | 3    | 5       | 0       | 1            | 1      | 1        | 8       | 1          | 0          | 6          | 33           | -0           | 0      | 323   | 273        | 126       | RS    |
| RU   | 2       | 0     | 34     | 27     | 236       | 1     | 46       | 15         | 5689     | 50         | 3        | 13  | 1        | 16       | 117  | 618     | 23      | 26           | 142    | 35       | 30      | 69         | 318        | 17         | 1489         | -0           | 0      | 10632 | 8508       | 1100      | RU    |
| SE   | 0       | 0     | 26     | 30     | 50        | 0     | 1        | 0          | 32       | 86         | 0        | 2   | 0        | 0        | 0    | 7       | 0       | 9            | 78     | 0        | 1       | 63         | 0          | 0          | 71           | -0           | -0     | 737   | 515        | 438       | SE    |
| SI   | 0       | 0     | 0      | 0      | 2         | 0     | 1        | 2          | 0        | 0          | 22       | 1   | 0        | 0        | 0    | 0       | 0       | 0            | 0      | 0        | 6       | 0          | 0          | 1          | 6            | -0           | -0     | 103   | 90         | 86        | SI    |
| SK   | 0       | 0     | 2      | 0      | 41        | 0     | 8        | 9          | 1        | 0          | 2        | 30  | 0        | 0        | 1    | 4       | 0       | 0            | 1      | 0        | 3       | 2          | 0          | 2          | 13           | -0           | 0      | 216   | 195        | 176       | SK    |
| ТJ   | 0       | 0     | 0      | 0      | 0         | 0     | 0        | 0          | 2        | 0          | 0        | 0   | 9        | 14       | 1    | 0       | 25      | 0            | 0      | 0        | 0       | 0          | 100        | 0          | 74           | -0           | 0      | 234   | 59         | 1         | ТJ    |
| ТΜ   | 0       | 0     | 0      | 0      | 1         | 0     | 0        | 0          | 24       | 0          | 0        | 0   | 1        | 57       | 9    | 4       | 16      | 0            | 0      | 0        | 2       | 0          | 680        | 2          | 196          | -0           | 0      | 1035  | 153        | 7         | ТΜ    |
| TR   | 2       | 0     | 1      | 0      | 8         | 1     | 14       | 8          | 29       | 0          | 1        | 1   | 0        | 1        | 676  | 25      | 0       | 2            | 1      | 26       | 135     | 1          | 454        | 66         | 368          | -0           | 0      | 1966  | 912        | 148       | TR    |
| UA   | 2       | 0     | 10     | 3      | 214       | 1     | 74       | 18         | 223      | 6          | 3        | 20  | 0        | 0        | 70   | 555     | 0       | 3            | 17     | 27       | 26      | 17         | 13         | 14         | 154          | -0           | 0      | 1860  | 1590       | 637       | UA    |
| UZ   | 0       | 0     | 0      | 0      | 1         | 0     | 1        | 0          | 28       | 0          | 0        | 0   | 4        | 34       | 7    | 5       | 135     | 0            | 0      | 0        | 1       | 0          | 372        | 2          | 161          | -0           | 0      | 807   | 269        | 8         | UZ    |
| ATL  | 0       | 0     | 94     | 139    | 48        | 151   | 2        | 1          | 299      | 37         | 1        | 2   | 0        | 0        | 2    | 12      | 0       | 1066         | 46     | 0        | 69      | 301        | 5          | 78         | 3731         | 5            | -0     | 8092  | 2790       | 2270      | ATL   |
| BAS  | 0       | 0     | 39     | 14     | 119       | 0     | 2        | 1          | 71       | 48         | 1        | 4   | 0        | 0        | 0    | 14      | 0       | 7            | 160    | 0        | 1       | 75         | 0          | 1          | 58           | 0            | 0      | 1088  | 784        | 667       | BAS   |
| BLS  | 2       | 0     | 3      | 1      | 46        | 0     | 66       | 19         | 133      | 2          | 2        | 6   | 0        | 0        | 254  | 178     | 0       | 2            | 5      | 95       | 56      | 5          | 36         | 21         | 140          | -0           | 0      | 1289  | 928        | 292       | BLS   |
| MED  | 9       | 10    | 15     | 1      | 30        | 23    | 30       | 39         | 22       | - 1        | 16       | 9   | 0        | 0        | 352  | 28      | 0       | 50           | 4      | 17       | 1677    | 22         | 166        | 764        | 1118         | 1            | 3      | 6495  | 2674       | 2154      | MED   |
| NOS  | 0       | -0    | 128    | 74     | 58        | <br>२ | 1        | 0          | 16       | 22         | -0       | 3   | ñ        | n        | 0    | _0<br>5 | n       | 80           | 51     | 0        | A       | 458        | _00<br>0   | 2          | 102          | 2            | n      | 2496  | 1707       | 1603      | NOS   |
| Δςτ  | 1       | 0     | 1      | 1      | 00<br>٦   | 1     | 1        | 0<br>2     | 121      | 1          | ۰<br>۱   | 1   | Л        | 61       | 112  | ່າວ     | 10      | 1            | 1      | 1        | +<br>56 |            | 7077       | 70         | 132          |              | 0      | 12250 | 7/0        | 44        | Δςτ   |
|      | U<br>T  | 1     | л<br>Т | 0<br>T | C<br>A    | 17    | 4<br>2   | 2<br>2     | ر<br>101 | л<br>Т     | 1        | 1   | 4<br>^   | 01       | 113  | 20<br>2 | 40<br>Λ | E0<br>T      | U<br>T | 4        | 201     | 1<br>2     | 1911<br>17 | 1U<br>001  | -1977<br>000 | -0           | 0      | 10202 | 149<br>252 | 00<br>220 | NUV   |
| CUM  | 0       | 12    | 2      | 100    | 4<br>2050 | 270   | 2<br>605 | 2<br>۱۱۲   | 2        | 240        | 111      | 104 | 0<br>25  | 0<br>220 | 1006 | 1010    | 100     | 00<br>1600   | 740    | 1<br>241 | 201     | 3<br>1670  | 11201      | 001        | 903          | -0           | U<br>A | 2391  | 203        | 220       | NUA   |
| JUIN | 00<br>7 | 12    | 140    | 4UŎ    | 2000      | 3/ð   | 400      | 415<br>2E1 | 7105     | 342<br>320 | 111      | 194 | 20<br>01 | ∠3ŏ      | 1070 | 1019    | 490     | 7000<br>7000 | 149    | 100      | 2034    | 1010       | 2101       | 2104       | 10020        | ŏ            | 4      | 14030 | 20227      | 1/2/0     | JUIVI |
|      | 4/      | 2     | 404    | 1/8    | 1100      | 102   | 499      | 351<br>161 | 1102     | 230        | 90<br>70 | 108 | 21       | 1/0      | 10/2 | 1521    | 450     | 343<br>201   | 482    | 123      | (/U     | 800        | 5121       | 33/<br>107 | 4/12         | -1           | 1      |       | 20227      | 14349     | EXU   |
| EU   | 15      | 1     | 304    | 00     | 1100      | 111   | 213      | 101        | 250      | 7200       | /ð       | 111 | 0        | 0        | 9/   | 1072    | 0       | 201          | 219    | 21       | 010     | 1700       | 9          | 197        | 1280         | U            | U      | 75601 | 12394      | 11419     | EU    |
| emis | 66      | 16    | 114    | 401    | 2211      | 490   | 041      | 440        | 9598     | 398        | 113      | 204 | 29       | 294      | 2139 | 19/3    | 537     | 2098         | /82    | 201      | 3394    | 1/20       | 20379      | 4216       | 0            | <b>D</b> 112 |        | /5601 | 42/52      | 23307     | emis  |
|      | МK      | IVI I | NL     | NО     | ۲L        | ۲ľ    | кO       | RS         | КU       | ЪE         | SI       | ЪK  | ۱J       | ΙM       | IR   | UA      | UΖ      | AIL          | RA2    | RT2      | MED     | NOS        | AST        | NOA        | RIC          | DW2          | VUL    | SUM   | EXC        | ΕU        |       |

Table C.3: 2016 country-to-country blame matrices for **reduced nitrogen** deposition. Units: 100 Mg of N. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|             | AL  | AM  | AT         | ΑZ       | ΒA  | BE      | ΒG     | ΒY     | CH       | CY       | CZ  | DE        | DK         | EE       | ES     | FI     | FR       | GB   | GE         | GR  | HR  | ΗU     | IE  | IS      | IT       | KG      | ΚZ   | LT     | LU       | LV     | MD        | ME      |      |
|-------------|-----|-----|------------|----------|-----|---------|--------|--------|----------|----------|-----|-----------|------------|----------|--------|--------|----------|------|------------|-----|-----|--------|-----|---------|----------|---------|------|--------|----------|--------|-----------|---------|------|
| AL          | 89  | 0   | 0          | 0        | 0   | 0       | 1      | 0      | 0        | 0        | 0   | 1         | 0          | 0        | 4      | 0      | 1        | 0    | 0          | 6   | 1   | 1      | 0   | 0       | 9        | -0      | 0    | 0      | 0        | 0      | 0         | 0       | AL   |
| AM          | 0   | 64  | 0          | 25       | 0   | 0       | 0      | 0      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 5          | 0   | 0   | 0      | 0   | 0       | 0        | 0       | 0    | 0      | 0        | 0      | 0         | 0       | AM   |
| AT          | 0   | 0   | 254        | 0        | 1   | 2       | 0      | 1      | 20       | 0        | 28  | 136       | 0          | 0        | 3      | 0      | 20       | 3    | 0          | 0   | 6   | 13     | 0   | 0       | 40       | 0       | 0    | 0      | 0        | 0      | 0         | 0       | AT   |
| AZ          | 0   | 20  | 0          | 302      | 0   | 0       | 0      | 0      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 17         | 0   | 0   | 0      | 0   | 0       | 0        | 0       | 1    | 0      | 0        | 0      | 0         | 0       | AZ   |
| BA          | 1   | 0   | 5          | 0        | 75  | 0       | 1      | 1      | 0        | 0        | 5   | 8         | 0          | 0        | 6      | 0      | 2        | 0    | 0          | 1   | 22  | 17     | 0   | 0       | 22       | 0       | 0    | 0      | 0        | 0      | 0         | 1       | BA   |
| BF          | 0   | 0   | 0          | -0       | 0   | 160     | 0      | 0      | 1        | 0        | 0   | 27        | 1          | 0        | 3      | 0      | 88       | 15   | -0         | -0  | 0   | 0      | 2   | 0       | 1        | 0       | 0    | 0      | 5        | 0      | 0         | 0       | BF   |
| BG          | 6   | 0   | 2          | 0        | 1   | 0       | 183    | 3      | 0        | 0        | 2   |           | 0          | 0        | 3      | 0      | 1        |      | 0          | 23  | 1   | 8      | 0   | 0       | - 5      | 0<br>0  | 0    | 0<br>0 | 0        | 0      | 4         | 0<br>0  | BG   |
| BV          | 0   | 0   | 4          | 0        | 1   | 2       | 100    | 180    | 1        | 0        | 0   | 16        | 6          | 2        | 3      | 2      | 0        | 6    | 0          | 1   | 2   | 10     | 1   | 0       | 6        | 0       | 2    | 23     | 0        | 6      | 6         | 0       | BV   |
| сц          | 0   | 0   | 7          | 0        | 0   | 1       | 0      | 409    | 1<br>272 | 0        | 1   | 20        | 0          | ے<br>م   | 5      | 2      | 40       | 1    | 0          | 0   | -   | 10     | 0   | 0       | 20       | 0       | 2    | 25     | 0        | 0      | 0         | 0       |      |
| СП          | 0   | 0   | 2          | 0        | 0   | 1       | 0      | 0      | 215      | 0        | 1   | 29        | 0          | 0        | 0      | 0      | 40       | 1    | 0          | 0   | 0   | 0      | 0   | 0       | 32       | -0      | 0    | 0      | 0        | 0      | 0         | 0       | СП   |
| CT          | 0   | 0   | 22         | 0        | 1   | 0       | 0      | 1      | 0        | 1        | 0   | 100       | 1          | 0        | 0      | 0      | 0        | 0    | 0          | 0   | 0   | 14     | 1   | -0      | 0        | 0       | 0    | 1      | 1        | 0      | 0         | 0       |      |
|             | 0   | 0   | 33         | 0        | 1   | 3       | 0      | 1      | 5        | 0        | 239 | 129       | 1          | 0        | 3      | 0      | 23       | 4    | 0          | 0   | 4   | 14     | 1   | 0       | 8        | 0       | 0    | 1      | 1        | 0      | 0         | 0       |      |
| DE          | 0   | 0   | 37         | 0        | 0   | /1      | 0      | 4      | 57       | 0        | 36  | 2677      | 16         | 0        | 21     | 0      | 312      | 64   | 0          | 0   | 2   | 9      | 9   | 0       | 28       | -0      | 0    | 2      | 14       | 1      | 0         | 0       | DE   |
| DK          | 0   | 0   | 1          | 0        | 0   | 4       | 0      | 1      | 0        | -0       | 1   | 74        | 165        | 0        | 2      | 0      | 10       | 15   | 0          | 0   | 0   | 1      | 2   | 0       | 1        | 0       | 0    | 1      | 0        | 0      | 0         | 0       | DK   |
| EE          | 0   | 0   | 0          | 0        | 0   | 1       | 0      | 6      | 0        | 0        | 1   | 10        | 3          | 36       | 0      | 2      | 1        | 2    | 0          | 0   | 0   | 1      | 0   | 0       | 0        | 0       | 0    | 4      | 0        | 5      | 0         | 0       | EE   |
| ES          | 0   | 0   | 1          | 0        | 0   | 2       | 0      | 0      | 2        | 0        | 1   | 11        | 0          | 0        | 1917   | 0      | 67       | 5    | 0          | 0   | 0   | 0      | 2   | 0       | 10       | 0       | 0    | 0      | 0        | 0      | 0         | 0       | ES   |
| FI          | 0   | 0   | 1          | 0        | 0   | 2       | 0      | 13     | 0        | 0        | 3   | 30        | 10         | 6        | 1      | 133    | 5        | 7    | 0          | 0   | 0   | 2      | 1   | 0       | 1        | 0       | 1    | 6      | 0        | 4      | 0         | 0       | FI   |
| FR          | 0   | 0   | 5          | 0        | 0   | 48      | 0      | 1      | 41       | 0        | 4   | 102       | 4          | 0        | 287    | 0      | 2838     | 76   | 0          | 0   | 1   | 2      | 17  | 0       | 64       | 0       | 0    | 1      | 6        | 0      | 0         | 0       | FR   |
| GB          | 0   | 0   | 1          | 0        | 0   | 13      | 0      | 1      | 2        | -0       | 2   | 49        | 5          | 0        | 20     | 0      | 79       | 907  | 0          | 0   | 0   | 1      | 99  | 0       | 4        | -0      | 0    | 0      | 1        | 0      | 0         | 0       | GB   |
| GE          | 0   | 12  | 0          | 35       | 0   | 0       | 0      | 0      | 0        | 0        | 0   | 0         | 0          | 0        | 1      | 0      | 0        | 0    | 171        | 1   | 0   | 0      | 0   | 0       | 0        | 0       | 1    | 0      | 0        | 0      | 0         | 0       | GE   |
| GL          | 0   | 0   | 0          | 0        | 0   | 0       | 0      | 0      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 0          | 0   | 0   | 0      | 0   | 0       | 0        | 0       | 0    | 0      | 0        | 0      | 0         | 0       | GL   |
| GR          | 10  | 0   | 1          | 0        | 1   | 0       | 18     | 2      | 0        | 0        | 1   | 3         | 0          | 0        | 8      | 0      | 2        | 0    | 0          | 185 | 1   | 3      | 0   | 0       | 9        | 0       | 0    | 0      | 0        | 0      | 1         | -0      | GR   |
| HR          | 1   | 0   | 14         | 0        | 14  | 0       | 1      | 1      | 1        | 0        | 8   | 14        | 0          | 0        | 10     | 0      | 5        | 1    | 0          | 1   | 105 | 32     | 0   | 0       | 54       | 0       | 0    | 0      | 0        | 0      | 0         | 0       | HR   |
| ΗU          | 1   | 0   | 26         | 0        | 6   | 1       | 4      | 2      | 2        | 0        | 13  | 25        | 1          | 0        | 5      | 0      | 5        | 1    | 0          | 1   | 24  | 265    | 0   | 0       | 20       | 0       | 0    | 0      | 0        | 0      | 1         | 0       | ΗU   |
| IE          | 0   | -0  | 0          | -0       | 0   | 2       | 0      | 0      | 0        | -0       | 0   | 6         | 0          | 0        | 4      | 0      | 15       | 27   | -0         | -0  | 0   | 0      | 373 | -0      | 0        | -0      | 0    | 0      | 0        | 0      | 0         | 0       | IE   |
| IS          | 0   | 0   | 0          | 0        | 0   | 0       | 0      | 0      | 0        | -0       | 0   | 1         | 0          | 0        | 0      | 0      |          | 3    | 0          | 0   | 0   | 0      | 2   | 17      | 0        | 0       | 0    | 0      | 0        | 0      | 0         | 0       | IS   |
| IT.         | 3   | 0   | 16         | 0        | 4   | 1       | 2      | 1      | 15       | 0        | 5   | 20        | 0          | 0        | 73     | 0      | 44       | 2    | 0          | 3   | 13  | 10     | 0   | 0       | 1924     | 0       | 0    | 0      | 0        | 0      | 0         | 0       | IT   |
| ĸG          | 0   | 1   | 10         | 2        | 0   | 0       | 0      | 0      | 0        | 0        | 0   |           | 0          | 0        | 0      | 0<br>0 | 0        | 0    | 0          | 0   | 10  | 10     | 0   | n<br>0  | 0        | 181     | 22   | 0      | 0        | 0      | 0         | 0       | ĸG   |
| K7          | 1   | 15  | 1          | 50       | 1   | 1       | 3      | 12     | 1        | 0        | 2   | 8         | 1          | 1        | 3      | 1      | 1        | 1    | 12         | 2   | 0   | 2      | 0   | 0       | 1        | 101     | 1068 | 2      | 0        | 1      | 2         | 0       | K7   |
| IT          | 0   | 10  | 1          | 0        | 0   | 1       | 0      | 28     | 0        | 0        | 2   | 24        | 5          | 1        | 1      | 1      | 1        | 1    | 12         | 0   | 0   | 2      | 1   | 0       | 1        |         | 0001 | 101    | 0        | 6      | 1         | 0       | 117  |
| 111         | 0   | 0   | 0          | 0        | 0   | 2       | 0      | 20     | 0        | 0        | 0   | 24        | 0          | 0        | 0      | 0      | -        | 1    | 0          | 0   | 0   | ے<br>م | 0   | 0       | 0        | 0       | 0    | 101    | 10       | 0      | 0         | 0       | 111  |
|             | 0   | 0   | 1          | 0        | 0   | 1       | 0      | 10     | 0        | 0        | 2   | 10        | 5          | 2        | 1      | 1      | 2        | 1    | 0          | 0   | 0   | 2      | 1   | 0       | 1        | 0       | 0    | 21     | 10       | E1     | 0         | 0       |      |
|             | 0   | 0   | 1          | 0        | 0   | 1       | 1      | 10     | 0        | 0        | 2   | 10        | 0          | 0        | 1      | 1      | 0        | 4    | 0          | 0   | 0   | 2      | 1   | 0       | 1        | 0       | 0    | 21     | 0        | 0      | 12        | 0       |      |
|             | 0   | 0   | 0          | 0        | 0   | 0       | 1      | 2      | 0        | 0        | 0   | 2         | 0          | 0        | 0      | 0      | 0        | 0    | 0          | 1   | 0   | 2      | 0   | 0       | 1<br>F   | 0       | 0    | 0      | 0        | 0      | 43        | 6       |      |
|             | 4   | 0   | 0          | 0        | 2   | 0       | 0      | 0      | 0        | 0        | 0   | 1         | 0          | 0        | 2      | 0      | 0        | 0    | 0          | 1   | 0   | 1      | 0   | 0       | 5        | 0       | 0    | 0      | 0        | 0      | 0         | 0       |      |
| IVIK        | 1   | 0   | 0          | 0        | 0   | 0       | 4      | 0      | 0        | 0        | 0   | 1         | 0          | 0        | 2      | 0      | 0        | 0    | 0          | 9   | 0   | 1      | 0   | 0       | 2        | 0       | 0    | 0      | 0        | 0      | 0         | 0       | IVIK |
| IVI I       | 0   | 0   | 0          | 0        | 0   | 0       | 0      | 0      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 0          | 0   | 0   | 0      | 0   | 0       | 0        | 0       | 0    | 0      | 0        | 0      | 0         | -0      | MI   |
| NL          | 0   | 0   | 0          | -0       | 0   | 51      | 0      | 0      | 1        | 0        | 1   | 82        | 1          | 0        | 2      | 0      | 39       | 26   | -0         | -0  | 0   | 0      | 3   | 0       | 1        | 0       | 0    | 0      | 1        | 0      | 0         | 0       | NL   |
| NO          | 0   | 0   | 1          | 0        | 0   | 5       | 0      | 3      | 0        | 0        | 2   | 52        | 21         | 1        | 2      | 2      | 19       | 27   | 0          | 0   | 0   | 0      | 5   | 0       | 0        | 0       | 0    | 2      | 0        | 1      | 0         | 0       | NO   |
| PL          | 1   | 0   | 24         | 0        | 2   | 12      | 2      | 42     | 5        | 0        | 67  | 330       | 24         | 1        | 8      | 1      | 53       | 19   | 0          | 1   | 8   | 37     | 3   | 0       | 15       | 0       | 0    | 12     | 1        | 3      | 3         | 0       | PL   |
| PT          | 0   | 0   | 0          | 0        | 0   | 0       | 0      | 0      | 0        | -0       | 0   | 1         | 0          | 0        | 61     | 0      | 3        | 0    | 0          | 0   | 0   | 0      | 0   | 0       | 0        | 0       | 0    | 0      | 0        | 0      | 0         | 0       | PT   |
| RO          | 5   | 0   | 10         | 0        | 5   | 1       | 36     | 10     | 1        | 0        | 8   | 26        | 1          | 0        | 7      | 0      | 5        | 2    | 1          | 8   | 8   | 56     | 0   | 0       | 22       | 0       | 1    | 1      | 0        | 0      | 22        | 0       | RO   |
| RS          | 9   | 0   | 4          | 0        | 8   | 0       | 14     | 2      | 1        | 0        | 4   | 10        | 0          | 0        | 5      | 0      | 2        | 1    | 0          | 5   | 10  | 32     | 0   | 0       | 13       | 0       | 0    | 0      | 0        | 0      | 1         | 1       | RS   |
| RU          | 3   | 15  | 10         | 70       | 6   | 9       | 16     | 241    | 4        | 1        | 19  | 148       | 28         | 24       | 17     | 49     | 38       | 28   | 32         | 10  | 5   | 20     | 5   | 0       | 24       | 5       | 437  | 42     | 1        | 26     | 17        | 1       | RU   |
| SE          | 0   | 0   | 2          | 0        | 0   | 6       | 0      | 12     | 1        | 0        | 8   | 118       | 59         | 3        | 2      | 10     | 20       | 24   | 0          | 0   | 1   | 3      | 4   | 0       | 2        | 0       | 0    | 7      | 0        | 4      | 0         | 0       | SE   |
| SI          | 0   | 0   | 14         | 0        | 1   | 0       | 0      | 0      | 1        | 0        | 2   | 7         | 0          | 0        | 3      | 0      | 2        | 0    | 0          | 0   | 9   | 5      | 0   | 0       | 27       | 0       | 0    | 0      | 0        | 0      | 0         | 0       | SI   |
| SK          | 0   | 0   | 14         | 0        | 2   | 1       | 1      | 1      | 1        | 0        | 16  | 21        | 1          | 0        | 2      | 0      | 4        | 1    | 0          | 0   | 6   | 39     | 0   | 0       | 8        | 0       | 0    | 0      | 0        | 0      | 0         | 0       | SK   |
| ΤJ          | 0   | 0   | 0          | 1        | 0   | 0       | 0      | 0      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 0          | 0   | 0   | 0      | 0   | 0       | 0        | 4       | 6    | 0      | 0        | 0      | 0         | 0       | ТJ   |
| ТМ          | 0   | 3   | 0          | 16       | 0   | 0       | 0      | 1      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 3          | 0   | 0   | 0      | 0   | 0       | 0        | 0       | 14   | 0      | 0        | 0      | 0         | 0       | ТМ   |
| TR          | 3   | 13  | 2          | 10       | 1   | 0       | 11     | 4      | 1        | 7        | 1   | 6         | 0          | 0        | 13     | 0      | 3        | 0    | 8          | 23  | 1   | 3      | 0   | 0       | 11       | 0       | 2    | 0      | 0        | 0      | 3         | 0       | TR   |
| UA          | 2   | 1   | 12         | 5        | 4   | 2       | 16     | 101    | 2        | 0        | 19  | 66        | 6          | 1        | 12     | 1      | 12       | 5    | 5          | 8   | 8   | 49     | 1   | 0       | 27       | 0       | 7    | 10     | 0        | 3      | 46        | 0       | UA   |
| UZ          | 0   | 3   | 0          | 11       | 0   | 0       | 0      | 1      | 0        | 0        | 0   | 0         | 0          | 0        | 0      | 0      | 0        | 0    | 2          | 0   | 0   | 0      | 0   | 0       | 0        | 19      | 45   | 0      | 0        | 0      | 0         | 0       | UZ   |
| ATL         | 0   | 0   | 5          | 0        | 0   | 45      | 0      | 11     | 7        | 0        | 10  | 217       | 28         | 3        | 418    | 14     | 608      | 439  | 0          | 0   | 1   | 2      | 325 | 22      | 11       | 0       | 7    | 4      | 4        | 2      | 0         | 0       | ATL  |
| BAS         | 0   | 0   | 5          | 0        | 1   | 10      | 0      | 25     | 2        | 0        | 14  | 272       | 111        | 11       | 4      | 25     | 31       | 30   | 0          | 0   | 2   | 8      | 6   | 0       | 3        | 0       | 0    | 20     | 1        | 12     | 1         | 0       | BAS  |
| BIS         | 3   | 2   | 5          | 7        | 3   | 1       | 30     | 19     | 1        | 1        | 5   | 18        | 1          | 0        | 6      | 1      | 4        | 1    | 38         | 18  | 3   | 11     | 0   | 0       | 12       | 0       | 3    | 3      | 0        | 1      | 19        | 0       | BLS  |
| MFD         | 30  | 1   | 26         | 1        | 14  | 7       | 28     | 6      | 18       | 11       | 16  | 65        | 1          | n        | 555    | n      | 261      | 15   | 1          | 108 | 31  | 26     | 2   | ñ       | 640      | ñ       | 1    | 1      | 1        | n<br>0 | 4         | 2       | MED  |
| NOS         | 0   | n i | _0<br>_/   | n i      | 17  | י<br>72 | 0      | ۵<br>۵ | 10       | _0       | -0  | 370       | 103        | 1        | 323    | 1      | 328      | 526  | n i        | 100 | 1   | -0     | 67  | n       | 7        | n       | n i  | 1      | -<br>2   | 2<br>2 | ۳<br>۱    | ے<br>م  | NOS  |
| Δςτ         | 0   | 10  | 4          | 116      | 0   | 14      | 0<br>D | 0<br>/ | 4        | -0       | 9   | 210       | 100        | U<br>L   | ر<br>۷ | ۰<br>۲ | J20<br>1 | 020  | 10         | 1   | 0   | J<br>1 | 01  | 0       | 2        | 3U<br>0 | 120  | 1      | ر<br>۱   | ے<br>م | 1         | 0       | Δςτ  |
|             | 1   | 12  | 0          | 110      | 1   | 1       | 1      | 4      | 0        | 4        | 0   | 2         | 0          | 0        | 4      | 0      | 20       | 0    | 12         | 4   | 1   | 1<br>1 | 0   | 0       | נ<br>דר  | 00      | 120  | ~<br>T | 0        | 0      | U<br>T    | 0       |      |
| NUA<br>CLIM | 101 | 160 | 2          | 0        | 100 | L       | 1      | 1070   | 472      | 0        | 2   | ŏ<br>5000 | U<br>610   | 0        | 110    | 0      | 52       | 2    | 200        | 4   | 1   | 2      | 026 | U<br>41 | 2100     | 0       | 1750 | 0      | U<br>E 1 | 120    | 170       | U<br>14 | NUA  |
|             | 140 | 102 | 549<br>501 | 100      | 100 | 04U     | 303    | 1000   | 4/3      | 33<br>17 | 5/3 | 028U      | 010        | 94<br>70 | 2000   | 240    | 0000     | 1005 | 308<br>257 | 42ŏ | 219 | 641    | 930 | 41      | 3102     | 202     | 1600 | 2/1    | 10       | 110    | 119       | 14      |      |
|             | 140 | 147 | 100        | 527<br>1 | 138 | 405     | 322    | 140    | 438      | 1/       | 91Q | 4329      | 305        | 19       | 2524   | 205    | 3192     | 1285 | 25/        | 293 | 242 | 041    | 530 | τų      | 2405     | 252     | 1003 | 239    | 43<br>41 | 113    | 122       | 11      |      |
| EU          | 20  | 150 | 458        | 1        | 40  | 304     | ∠5U    | 148    | 122      | 1        | 455 | 3950      | 302<br>601 | 00       | 2440   | 149    | 5058     | 1212 | 1          | 225 | 191 | 5U3    | 061 | 0       | 2247     | 0       | 4    | 128    | 41       | 10     | 35<br>107 | 10      | EU   |
| emis        | 201 | 128 | 559        | 012      | 1/2 | 560     | 414    | 1121   | 4/1      | 46       | 000 | 5456      | 021        | 98       | 4053   | 256    | 2188     | 2384 | 295        | 494 | 288 | /17    | 961 | 44      | 3148<br> | 295     | 1957 | 280    | 54       | 134    | 187       | 10      | emis |
|             | AL  | АΜ  | ΑI         | ΑZ       | ВA  | RF      | ВĈ     | ΒY     | CH       | CY       | CΖ  | DE        | DK         | ЕE       | ES     | Η      | ьĸ       | GB   | GE         | GR  | НΚ  | ΗU     | ΙĿ  | 15      |          | КG      | κz   | LI     | LU       | LV     | MD        | ME      |      |

Table C.3 Cont.: 2016 country-to-country blame matrices for **reduced nitrogen** deposition. Units: 100 Mg of N. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|       | MK       | ΜT       | NL         | NO         | PL         | ΡT   | RO        | RS       | RU        | SE        | SI          | SK     | ТJ        | ТΜ    | TR   | UA   | UZ        | ATL       | BAS         | BLS | MED        | NOS          | AST   | NOA      | BIC      | DMS      | VOL      | SUM    | EXC          | EU          |       |
|-------|----------|----------|------------|------------|------------|------|-----------|----------|-----------|-----------|-------------|--------|-----------|-------|------|------|-----------|-----------|-------------|-----|------------|--------------|-------|----------|----------|----------|----------|--------|--------------|-------------|-------|
| AL    | 0        | 0        | 0          | 0          | 1          | 0    | 1         | 6        | 0         | 0         | 0           | 0      | -0        | 0     | 1    | 1    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 3        | 5        | 0        | -0       | 132    | 125          | 26          | AL    |
| AM    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 1         | 0         | 0           | 0      | 0         | 1     | 63   | 0    | 0         | 0         | 0           | 0   | 0          | 0            | 38    | 2        | 7        | 0        | 0        | 208    | 161          | 1           | AM    |
| AT    | 0        | 0        | 4          | 0          | 9          | 0    | 2         | 2        | 1         | 0         | 13          | 5      | 0         | 0     | 1    | 2    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 1        | 4        | 0        | 0        | 573    | 567          | 539         | AT    |
| AZ    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 22        | 0         | 0           | 0      | 0         | 2     | 51   | 2    | 2         | 0         | 0           | 0   | 0          | 0            | 90    | 3        | 13       | 0        | 0        | 528    | 422          | 2           | ΑZ    |
| BA    | 0        | 0        | 1          | 0          | 4          | 0    | 7         | 15       | 1         | 0         | 1           | 3      | 0         | 0     | 1    | 4    | 0         | 0         | 0           | 0   | 1          | 0            | 0     | 4        | 5        | 0        | 0        | 217    | 207          | 107         | ΒA    |
| BE    | 0        | 0        | 28         | 0          | 1          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | -0        | 0           | -0  | 0          | -1           | -0    | 0        | 0        | -0       | -0       | 333    | 334          | 332         | BE    |
| BG    | 8        | 0        | 0          | 0          | 4          | 0    | 63        | 22       | 10        | 0         | 0           | 2      | -0        | 0     | 25   | 18   | 0         | 0         | 0           | -0  | 1          | 0            | 1     | 6        | 10       | 0        | -0       | 420    | 402          | 303         | BG    |
| BY    | 0        | 0        | 5          | 1          | 104        | 0    | 24        | 5        | 69        | 5         | 1           | 4      | 0         | 0     | 14   | 98   | 0         | 0         | 0           | 0   | 0          | 1            | 1     | 3        | 7        | 0        | 1        | 982    | 970          | 282         | BY    |
| СН    | 0        | 0        | 1          | 0          | 1          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | -0        | 0     | 0    | 0    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 1        | 2        | 0        | -0       | 394    | 390          | 116         | СН    |
| CY    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 4    | 0    | 0         | 0         | 0           | 0   | -0         | 0            | 1     | 1        | -        | -0       | -0       | 14     | 11           | 0           | CY    |
| C7    | 0        | 0        | 6          | 0          | 26         | 0    | 1         | 3        | 1         | 0         | 3           | 10     | 0         | 0     | 0    | 3    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 1        | 2        | 0        | 0        | 532    | 528          | 513         | C7    |
|       | 0        | 0        | 186        | 1          | 57         | 1    | т<br>Э    | 2        | 3         | 3         | 2           | 10     | _0        | 0     | 0    | 1    | 0         | 1         | -2          | 0   | 1          | -8           | 0     | 3        | 2        | 0        | 0        | 3631   | 3627         | 3557        |       |
|       | 0        | 0        | 100        | 1          | 21         | 0    | -         | 0        | 1         | J<br>1    | 2           | -      | -0        | 0     | 0    | 1    | 0         | 0         | -2          | 0   | 0          | -0           | 0     | 0        | 1        | 0        | 0        | 301    | 3021         | 301         |       |
| FF    | 0        | 0        | 15         | 0          | 11         | 0    | 1         | 0        | 8         | -<br>5    | 0           | 0      | 0         | 0     | 0    | 3    | 0         | 0         | -2          | 0   | 0          | -1           | 0     | 0        | 1        | -0       | 0        | 105    | 104          | 86          | FF    |
| ES    | 0        | 0        | 2          | 0          | 2          | 57   | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | 3         | -0          | 0   | 6          | 0            | 0     | 20       | 31       | 1        | 0        | 2125   | 2091         | 2078        | ES    |
|       | 0        | 0        | ے<br>د     | 2          | 24         | 51   | 2         | 1        | 70        | 22        | 0           | 1      | 0         | 0     | 1    | 6    | 0         | -5        | 0           | 0   | -0         | 1            | 0     | 29       | J4<br>E  | -1       | -0       | 2155   | 2001         | 2010        |       |
|       | 0        | 0        | 0<br>21    | 0          | 24         | 10   | 2         | 1        | 10        | 22        | 1           | 1      | 0         | 0     | 1    | 1    | 0         | 2         | 0           | 0   | 0          | 1            | 0     | 22       | 5<br>26  | 0        | 0        | 2505   | 2550         | 207         |       |
|       | 0        | 0        | 21         | 1          | 0          | 10   | 1         | 1        | 2         | 1         | 1           | 1      | 0         | 0     | 1    | 1    | 0         | -3        | 0           | 0   | 2          | -1           | 0     | 22       | 20       | -2       | -0       | 1010   | 1017         | 1011        |       |
| GB    | 0        | 0        | 23         | 1          | 4          | 1    | 0         | 0        | 1         | 1         | 0           | 1      | -0        | 0     | 100  | 1    | 0         | -4        | 0           | 0   | 0          | -5           | -0    | 1        | 0        | -3       | 0        | 1212   | 1217         | 1211        | GB    |
| GE    | 0        | 0        | 0          | 0          | 0          | 0    | 1         | 0        | 11        | 0         | 0           | 0      | 0         | 1     | 106  | 3    | 1         | 0         | 0           | 0   | 0          | 0            | 29    | 3        | 11       | 0        | 0        | 390    | 340          | 5           | GE    |
| GL    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 0        | 2        | 0        | 0        | 4      | 1            | 1           | GL    |
| GR    | 8        | 0        | 0          | 0          | 3          | 0    | 11        | 8        | 6         | 0         | 0           | 1      | 0         | 0     | 26   | 10   | 0         | 0         | 0           | 0   | -1         | 0            | 1     | 13       | 20       | -0       | -1       | 352    | 320          | 247         | GR    |
| HR    | 0        | 0        | 1          | 0          | 3          | 0    | 6         | 13       | 1         | 0         | 12          | 5      | 0         | 0     | 1    | 4    | 0         | 0         | 0           | 0   | 1          | 0            | 0     | 5        | 5        | 0        | 0        | 322    | 311          | 274         | HR    |
| HU    | 1        | 0        | 1          | 0          | 10         | 0    | 42        | 29       | 2         | 0         | 7           | 31     | 0         | 0     | 2    | 12   | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 3        | 5        | 0        | 0        | 549    | 541          | 483         | HU    |
| IE    | 0        | 0        | 3          | 0          | 1          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | -0        | 0     | 0    | 0    | 0         | -2        | -0          | -0  | 0          | -0           | -0    | 0        | 1        | -3       | 0        | 431    | 434          | 433         | IE    |
| IS    | 0        | -0       | 1          | 0          | 0          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 0        | 2        | -0       | 0        | 29     | 27           | 10          | IS    |
| IT    | 0        | 0        | 2          | 0          | 5          | 3    | 5         | 3        | 3         | 0         | 12          | 2      | 0         | 0     | 3    | 5    | 0         | 1         | 0           | 0   | -3         | 0            | 0     | 30       | 33       | 0        | -3       | 2240   | 2181         | 2144        | IT    |
| KG    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 5         | 0         | 0           | 0      | 50        | 9     | 10   | 1    | 176       | 0         | 0           | 0   | 0          | 0            | 199   | 1        | 36       | 0        | 0        | 694    | 458          | 1           | KG    |
| ΚZ    | 1        | 0        | 1          | 0          | 8          | 0    | 8         | 3        | 587       | 1         | 0           | 1      | 33        | 108   | 147  | 44   | 415       | 0         | 0           | 0   | 1          | 0            | 1251  | 9        | 143      | 0        | 1        | 4006   | 2599         | 56          | ΚZ    |
| LT    | 0        | 0        | 3          | 0          | 50         | 0    | 3         | 1        | 13        | 4         | 0           | 1      | 0         | 0     | 0    | 10   | 0         | 0         | -0          | 0   | 0          | 0            | 0     | 0        | 1        | 0        | 0        | 275    | 273          | 219         | LT    |
| LU    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | 0         | 0           | -0  | 0          | -0           | 0     | 0        | 0        | 0        | -0       | 27     | 27           | 27          | LU    |
| LV    | 0        | 0        | 2          | 1          | 23         | 0    | 2         | 1        | 11        | 6         | 0           | 1      | 0         | 0     | 1    | 7    | 0         | 0         | -0          | 0   | 0          | 0            | 0     | 0        | 1        | 0        | 0        | 190    | 188          | 148         | LV    |
| MD    | 0        | 0        | 0          | 0          | 2          | 0    | 21        | 1        | 6         | 0         | 0           | 0      | 0         | 0     | 5    | 28   | 0         | 0         | -0          | -0  | 0          | 0            | 0     | 1        | 1        | 0        | -0       | 122    | 120          | 34          | MD    |
| ME    | 0        | 0        | 0          | 0          | 0          | 0    | 1         | 4        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 1    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 2        | 2        | 0        | 0        | 34     | 30           | 13          | ME    |
| MK    | 31       | 0        | 0          | 0          | 1          | 0    | 2         | 8        | 1         | 0         | 0           | 0      | 0         | 0     | 3    | 2    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 1        | 3        | 0        | -0       | 81     | 77           | 24          | MK    |
| ΜT    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | -0        | 0           | -0  | -0         | 0            | -0    | 0        | 0        | -0       | -0       | 1      | 1            | 1           | MT    |
| NL    | 0        | 0        | 344        | 0          | 1          | 0    | 0         | -0       | 0         | 0         | 0           | 0      | 0         | 0     | -0   | 0    | 0         | -0        | -0          | -0  | 0          | -4           | -0    | 0        | -0       | -0       | 0        | 549    | 553          | 552         | NL    |
| NO    | 0        | 0        | 12         | 117        | 9          | 0    | 0         | 0        | 5         | 14        | 0           | 0      | 0         | 0     | 0    | 1    | 0         | 0         | 1           | 0   | 0          | 1            | 0     | 0        | 7        | 0        | 0        | 313    | 303          | 175         | NO    |
| PL    | 0        | 0        | 23         | 2          | 1073       | 0    | 24        | 9        | 21        | 9         | 5           | 22     | 0         | 0     | 4    | 54   | 0         | 1         | -1          | 0   | 1          | 1            | 0     | 3        | 9        | 1        | 0        | 1938   | 1923         | 1777        | PL    |
| ΡT    | 0        | 0        | 0          | 0          | 0          | 149  | 0         | 0        | 0         | 0         | 0           | 0      | 0         | 0     | 0    | 0    | 0         | -2        | 0           | 0   | -0         | 0            | -0    | 3        | 5        | -1       | -0       | 221    | 215          | 215         | ΡT    |
| RO    | 4        | 0        | 2          | 0          | 18         | 0    | 674       | 42       | 26        | 1         | 2           | 10     | 0         | 0     | 30   | 77   | 0         | 0         | 0           | -0  | 1          | 0            | 1     | 10       | 18       | 0        | -0       | 1155   | 1124         | 899         | RO    |
| RS    | 7        | 0        | 1          | 0          | 6          | 0    | 39        | 213      | 3         | 0         | 1           | 5      | 0         | 0     | 4    | 8    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 4        | 8        | 0        | -0       | 421    | 408          | 152         | RS    |
| RU    | 3        | 0        | 19         | 7          | 180        | 1    | 68        | 19       | 6118      | 31        | 3           | 9      | 5         | 39    | 315  | 432  | 90        | 1         | 2           | 1   | 3          | 4            | 496   | 20       | 423      | 3        | 4        | 9649   | 8690         | 831         | RU    |
| SE    | 0        | 0        | 17         | 16         | 48         | 0    | 1         | 0        | 17        | 202       | 0           | 2      | 0         | 0     | 0    | 7    | 0         | 1         | -1          | 0   | 0          | 1            | 0     | 1        | 7        | 0        | 0        | 607    | 598          | 544         | SE    |
| SI    | 0        | 0        | 0          | 0          | 1          | 0    | 1         | 1        | 0         | 0         | 58          | 1      | 0         | 0     | 0    | 1    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 1        | 1        | 0        | 0        | 138    | 135          | 131         | SI    |
| SK    | 0        | 0        | 1          | 0          | 15         | 0    | 13        | 8        | 1         | 0         | 3           | 82     | 0         | 0     | 1    | 7    | 0         | 0         | 0           | 0   | 0          | 0            | 0     | 1        | 2        | 0        | 0        | 259    | 255          | 231         | SK    |
| ТJ    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 2         | 0         | 0           | 0      | 216       | 13    | 6    | 0    | 98        | 0         | 0           | 0   | 0          | 0            | 114   | 1        | 37       | 0        | -0       | 498    | 347          | 0           | ТJ    |
| ТМ    | 0        | 0        | 0          | 0          | 0          | 0    | 0         | 0        | 23        | 0         | 0           | 0      | 8         | 287   | 38   | 2    | 137       | 0         | 0           | 0   | 0          | 0            | 413   | 4        | 77       | 0        | -0       | 1030   | 535          | 3           | ΤМ    |
| TR    | 1        | 0        | 1          | 0          | 4          | 0    | 16        | 5        | 29        | 0         | 0           | 1      | 0         | 1     | 2980 | 22   | 1         | 0         | 0           | -1  | -3         | 0            | 261   | 74       | 140      | -0       | -5       | 3656   | 3189         | 106         | TR    |
| UA    | 2        | 0        | 4          | 1          | 116        | 1    | 144       | 17       | 225       | 4         | 4           | 15     | 0         | 1     | 117  | 1054 | 1         | 0         | 0           | -0  | 2          | 1            | 11    | 16       | 26       | 1        | 1        | 2198   | 2139         | 548         | UA    |
| UZ    | 0        | 0        | 0          | 0          | 0          | 0    | 1         | 0        | 25        | 0         | 0           | 0      | 54        | 75    | 33   | 2    | 846       | 0         | 0           | 0   | 0          | 0            | 251   | 3        | 61       | 0        | -0       | 1435   | 1120         | 4           | UZ    |
| ATL   | 0        | 0        | 68         | 41         | 39         | 121  | 2         | 1        | 1307      | 19        | 1           | 2      | 0         | 0     | 3    | 11   | 1         | -23       | 3           | 0   | 0          | 9            | 9     | 41       | 527      | -21      | 0        | 4348   | 3804         | 2388        | ATL   |
| BAS   | 0        | 0        | 28         | 6          | 115        | 0    | 4         | 2        | 36        | 80        | 1           | 4      | 0         | 0     | 0    | 15   | 0         | 0         | -7          | 0   | 0          | -2           | 0     | 1        | 6        | -2       | 0        | 881    | 883          | 795         | BAS   |
| BLS   | 3        | 0        | 1          | 0          | 22         | 0    | 101       | 16       | 120       | 1         | 1           | 4      | 0         | 1     | 430  | 170  | 1         | 0         | 0           | -5  | 2          | 0            | 26    | 20       | 40       | 0        | 1        | 1172   | 1087         | 250         | BLS   |
| MED   | 7        | 8        | 9          | 0          | 19         | 18   | 36        | 31       | 18        | 1         | 13          | 7      | 0         | 0     | 280  | 27   | 0         | 1         | 0<br>0      | -0  | -42        | 2            | 71    | 474      | 337      | -8       | -3       | 3188   | 2355         | 1905        | MED   |
| NOS   | 0        | 0        | 180        | 34         | 37         | 2    | 2         | 1        | 10        | 18        | 1           | 2      | 0         | 0     | 0    |      | n         | -1        | -2          | 0   | 1          | -15          | 0     | 2        | 21       | -4       | 0        | 1847   | 1844         | 1781        | NOS   |
| Δςτ   | n        | n        | 100        | 0          | 2          | 0    | 2         | 1        | 170       | 10        | n.          | ے<br>م | 56        | 136   | 300  | 17   | 150       | 0         | <u>د</u>    | n   | -1         | 10           | 18240 | -<br>130 | 4450     | -<br>- 0 | _4       | 24016  | 1182         | 2,01        | Δςτ   |
| NOA   | ñ        | ñ        | 1          | ñ          | 2          | 12   | 2         | 2        | 1         | ñ         | 1           | 1      | 0         | 0     | 7    | 2    | <br>N     | _2        | 0<br>0      | -0  | -11        | n            | 4     | 1245     | 356      | -2       | -3       | 1815   | 220          | 212         | NOA   |
| SUM   | 80       | 10       | 1021       | 231        | 2080       | 383  | ے<br>1320 | 2<br>400 | 1<br>0000 | 432       | 140         | 241    | 423       | 674   | 5020 | 2183 | 1021      | -30       | _6          | _1  | _15        | ں<br>12ء     |       | 2203     | 6073     | -38      | -11      | 86765  | 229          | 212         | SUM   |
| FXC   | 60       | 1        | 744        | 152        | 1843       | 228  | 1100      | 446      | 7338      | 313       | 132         | 221    | 367       | 537   | 3008 | 1035 | 1760      | -30<br>_F | _1          | 1   | +J         | _12          | 3150  | 2200     | 1226     | -30      | 2        | 30103  | 44830        | 23524       | FXC   |
| FU    | 23       | 1        | 608        | 26         | 1406       | 220  | 856       | 140      | 201       | 258       | 121         | 181    | 0         | 0     | 102  | 233  | 1         | -J<br>_R  | -1          | 0   | _2         | _20          | 5159  | 135      | 208      | -1       | -2<br>_2 |        | 22175        | 21030       | FII   |
| emic  | 2J<br>87 | 10       | 1040       | 233        | 2200       | 464  | 1378      | 520      | 0878      | 437       | 152         | 251    | 410       | 811   | 587/ | 232  | 1<br>20⊿२ | ۰.<br>۱   | <del></del> | n   | <u>-</u> 2 | - <u>2</u> 0 | 32835 | 4682     | _00<br>^ | -1       | J        | 07462  | 500/5        | 32222       | emic  |
| 01113 | MIX      | 12<br>MT | 1049<br>MI | 200<br>NIO | 2200<br>DI | DT   | 10/10     |          | DH0       | -51<br>CE | 1.J.2<br>CI | 2J1    | -13<br>TI | TM    | TD   | 117  | 117       | ΔTI       | RVC         | RIC |            |              | 72033 |          | BIC      | рмс      | V∩I      | SI INA | 53340<br>EVC | 52204<br>EU | CIIIS |
|       | 1411/    | OVE 1    | INL        | NU         | ГL         | 1° 1 | NU        | 172      | 1/0       | JE        | 51          | JU     | ١J        | 1 111 | IП   | UA   | 04        |           | DAJ         | υLJ | IVILU      | 1103         | 7,21  | NUA      | DIC      | כוזוים   | ٧UL      | 20101  | LAC          | £0          |       |

Table C.4: 2016 country-to-country blame matrices for  $AOT40_f^{uc}$ . Units: ppb.h per 15% emis. red. of NO<sub>x</sub>. Emitters  $\rightarrow$ , Receptors  $\downarrow$ .

|          | AL     | AM       | AT       | ΑZ      | BA     | BE     | BG     | BY      | СН     | CY     | CZ      | DE     | DK      | EE             | ES      | FI       | FR      | GB      | GE     | GR         | HR     | ΗU            | IE      | IS      | IT        | KG      | ΚZ     | LT     | LU   | LV     | MD     |     |
|----------|--------|----------|----------|---------|--------|--------|--------|---------|--------|--------|---------|--------|---------|----------------|---------|----------|---------|---------|--------|------------|--------|---------------|---------|---------|-----------|---------|--------|--------|------|--------|--------|-----|
| AL       | 746    | 0        | 27       | 1       | 48     | 2      | 83     | 8       | 6      | 0      | 26      | 60     | 2       | 1              | 80      | 2        | 79      | 14      | 1      | 252        | 42     | 63            | 3       | 0       | 294       | 0       | 4      | 3      | 1    | 1      | 5      | AL  |
| AM       | 2      | 569      | 4        | 446     | 2      | 0      | 8      | 8       | 1      | 4      | 3       | 9      | 1       | 1              | 16      | 2        | 12      | 3       | 158    | 14         | 2      | 4             | 1       | 0       | 19        | 0       | 33     | 2      | 0    | 1      | 4      | AM  |
| AT       | 1      | 0        | 579      | 0       | 7      | 9      | 7      | 11      | 91     | 0      | 114     | 551    | 3       | 1              | 49      | 3        | 272     | 49      | 0      | 4          | 37     | 72            | 9       | 1       | 255       | 0       | 1      | 4      | 5    | 2      | 2      | AT  |
| AZ       | 1      | 51       | 3        | 740     | 1      | 0      | 7      | 11      | 1      | 1      | 3       | 9      | 1       | 1              | 11      | 4        | 10      | 5       | 147    | 10         | 2      | 4             | 1       | 0       | 13        | 0       | 83     | 3      | 0    | 1      | 3      | AZ  |
| RA       | 12     | 0        | 89       | 0       | 491    | 4      | 40     | 14      | 8      | 0      | 90      | 164    | 3       | 1              | 74      | 4        | 97      | 26      | 0      | 21         | 198    | 170           | 5       | 1       | 259       | 0       | 2      | 4      | 2    | 2      | 4      | RA  |
| BE       | 12     | 0        | 16       | 0       | 1      | 544    | 1      | 7       | 0      | 0      | 11      | 50     | 6       | 1              | 22      | -        | 308     | 17      | 0      | 1          | 250    | 6             | 24      | 1       | 17        | 0       | 1      | -      | 15   | 2      | 0      | BE  |
|          | 24     | 0        | 10       | 0       | 10     | -044   | 1      | 1<br>27 | 9      | 0      | 26      | 50     | 0<br>F  | 1              | 20      | 4        | 200     | 47      | 0      | 142        | 16     | 70            | 24      | 4       | 11        | 0       | 1      | 4      | 15   | 2      | 21     |     |
| BG       | 24     | 0        | 21       | 2       | 19     | 3      | 050    | 31      | 3      | 0      | 20      | 04     | 5       | 2              | 29      | 1        | 34      | 15      | 3      | 143        | 10     | 10            | 3       | 1       | 04        | 0       | ð      | ŏ      | 1    | 4      | 31     | BG  |
| ΒY       | 0      | 0        | 6        | 0       | 1      | 4      | 2      | 335     | 2      | 0      | 23      | 100    | 25      | 15             | 5       | 33       | 33      | 39      | 0      | 1          | 2      | 12            | 9       | 2       | (         | 0       | 8      | /1     | 1    | 27     | 4      | BY  |
| СН       | 1      | 0        | 49       | 0       | 2      | 14     | 2      | 3       | 614    | 0      | 9       | 177    | 2       | 0              | 76      | 1        | 740     | 46      | 0      | 3          | 7      | 7             | 10      | 1       | 415       | 0       | 1      | 2      | 6    | 1      | 1      | СН  |
| CY       | 8      | 2        | 8        | 4       | 7      | 2      | 33     | 9       | 3      | 456    | 6       | 20     | 1       | 0              | 44      | 2        | 45      | 5       | 5      | 247        | 7      | 11            | 2       | 0       | 84        | 0       | 5      | 2      | 0    | 1      | 6      | CY  |
| CZ       | 1      | 0        | 122      | 0       | 6      | 7      | 6      | 17      | 18     | 0      | 432     | 547    | 10      | 2              | 27      | 8        | 208     | 62      | 0      | 2          | 22     | 79            | 12      | 2       | 43        | 0       | 2      | 7      | 6    | 4      | 3      | CZ  |
| DE       | 0      | 0        | 43       | 0       | 1      | -6     | 2      | 11      | 29     | 0      | 54      | 296    | 11      | 2              | 26      | 8        | 280     | 78      | 0      | 1          | 4      | 14            | 18      | 3       | 27        | 0       | 1      | 6      | 10   | 3      | 1      | DE  |
| DK       | 0      | 0        | 2        | 0       | 0      | -13    | 1      | 17      | 1      | 0      | 7       | 84     | -52     | 5              | 5       | 24       | 37      | 137     | 0      | 0          | 0      | 1             | 31      | 4       | 1         | 0       | 2      | 13     | 1    | 8      | 0      | DK  |
| EE       | 0      | 0        | 2        | 0       | 0      | 3      | 0      | 29      | 1      | 0      | 9       | 80     | 41      | 106            | 2       | 97       | 19      | 60      | 0      | 0          | 0      | 2             | 13      | 3       | 2         | 0       | 2      | 38     | 1    | 59     | 0      | EE  |
| ES       | 0      | 0        | 6        | 0       | 1      | 2      | 1      | 1       | 4      | 0      | 3       | 16     | 1       | 0              | 1280    | 1        | 159     | 24      | 0      | 1          | 2      | 2             | 11      | 1       | 32        | 0       | 0      | 0      | 0    | 0      | 0      | ES  |
| FI       | 0      | 0        | 1        | 0       | 0      | 2      | 0      | 9       | 0      | 0      | 3       | 38     | 18      | 14             | 1       | 165      | 11      | 33      | 0      | 0          | 0      | 1             | 7       | 3       | 1         | 0       | 1      | 9      | 0    | 10     | 0      | FI  |
| FR       | 0      | 0        | 11       | 0       | 1      | 1      | 1      | 4       | 23     | 0      | 7       | 63     | 4       | 1              | 160     |          | 904     | 69      | 0      | 2          | 4      | 5             | 26      | 2       | 86        | 0       | 1      | 2      | 3    | 1      | 0      | FR  |
|          | 0      | 0        | 21       | 0       | 0      | 7      | 0      | -       | 1      | 0      | ,       | 16     | 11      | 1              | 100     | 7        | 504     | 140     | 0      | -          | 1      | 2             | 47      | 4       | 7         | 0       | 1      | 2      | 1    | 2      | 0      |     |
| GD       | 0      | го<br>го | 2        | 260     | 0      | -1     | 14     | 10      | 1      | 0      | 4       | 10     | 11      | 1              | 10      | 2        | 12      | -140    | 602    | 10         | 1      | 2             | 41      | 4       | 20        | 0       | 22     | 3      | 1    | 2      | 6      | GD  |
| GE       | 2      | 50       | 4        | 200     | 2      | 0      | 14     | 13      | 1      | 2      | 3       | 11     | 2       | 1              | 10      | 3        | 13      | 5       | 003    | 18         | 2      | 5             | 1       | 0       | 20        | 0       | 33     | 4      | 0    | 2      | 0      | GE  |
| GL       | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0              | 0       | 0        | 0       | 0       | 0      | 0          | 0      | 0             | 0       | T       | 0         | 0       | 0      | 0      | 0    | 0      | 0      | GL  |
| GR       | 58     | 0        | 16       | 1       | 18     | 2      | 294    | 20      | 4      | 0      | 17      | 45     | 3       | 1              | 59      | 4        | 63      | 13      | 2      | 855        | 17     | 38            | 3       | 1       | 172       | 0       | 7      | 4      | 0    | 2      | 17     | GR  |
| HR       | 6      | 0        | 180      | 0       | 132    | 5      | 24     | 12      | 11     | 0      | 112     | 223    | 3       | 1              | 75      | 4        | 132     | 35      | 0      | 13         | 468    | 242           | 6       | 1       | 311       | 0       | 2      | 5      | 2    | 2      | 3      | HR  |
| HU       | 3      | 0        | 133      | 0       | 26     | 6      | 21     | 25      | 9      | 0      | 124     | 232    | 8       | 2              | 37      | 8        | 92      | 37      | 0      | 6          | 78     | 555           | 6       | 2       | 104       | 0       | 3      | 9      | 2    | 3      | 7      | HU  |
| IE       | 0      | 0        | 2        | 0       | 0      | -2     | 0      | 3       | 1      | 0      | 3       | 13     | 7       | 1              | 9       | 5        | 34      | 88      | 0      | 0          | 1      | 2             | 69      | 3       | 5         | 0       | 1      | 2      | 0    | 1      | 0      | IE  |
| IS       | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0       | 0      | 0      | 0       | 3      | 3       | 0              | 2       | 1        | 3       | 21      | 0      | 0          | 0      | 0             | 7       | 52      | 1         | 0       | 0      | 0      | 0    | 0      | 0      | IS  |
| IT       | 6      | 0        | 96       | 0       | 23     | 6      | 12     | 4       | 41     | 0      | 33      | 132    | 2       | 0              | 150     | 2        | 327     | 31      | 0      | 20         | 69     | 46            | 7       | 1       | 1173      | 0       | 1      | 2      | 2    | 1      | 1      | IT  |
| KG       | 1      | 4        | 3        | 10      | 1      | 0      | 3      | 3       | 1      | 0      | 2       | 6      | 0       | 0              | 17      | 1        | 10      | 1       | 5      | 4          | 1      | 2             | 0       | 0       | 12        | 684     | 222    | 1      | 0    | 0      | 1      | KG  |
| K7       | 0      | 1        | 2        | 5       | 1      | 1      | 2      | 9       | 1      | 0      | 2       | 11     | 2       | 2              | 8       | 9        | 9       | 7       | 2      | 2          | 1      | 2             | 2       | 1       | 7         | 17      | 365    | 3      | 0    | 2      | 1      | K7  |
| IT       | 0      | 0        | - 6      | 0       | 1      | 5      | 1      | 100     | 1      | 0      | 20      | 123    | 44      | 20             | 5       | 43       | 30      | 60      | 0      | 0          | 2      | 7             | 15      | 3       | 5         |         | 4      | 108    | 1    | 46     | 1      | IT  |
|          | 0      | 0        | 23       | 0       | 1      | 10     | 1      | 100     | 11     | 0      | 17      | 254    | 2       | 1              | 13      |          | 168     | 76      | 0      | 1          | 2      | 7             | 20      | 3       | 22        | 0       | 1      | 150    | 116  | 1      | 1      |     |
|          | 0      | 0        | 25       | 0       | 1      | 19     | 1      | 67      | 11     | 0      | 1/      | 204    | J<br>41 | 20             | 4J<br>2 | -4<br>E0 | 400     | 67      | 0      | 0          | 1      | י<br>ד        | 15      | .)<br>Э | 22        | 0       | 1      | 110    | -440 | 111    | 1      |     |
|          | 0      | 0        | 4        | 0       | 0      | 4      | 1      | 07      | 1      | 0      | 14      | 91     | 41      | <u>зо</u><br>г | 3<br>10 | 00<br>10 | 24      | 07      | 0      | 10         | 1      | 24            | 15      | э<br>1  | о<br>С    | 0       | 10     | 110    | 1    | 111    | 1      |     |
| MD       | 2      | 0        | 10       | 2       | 5      | 2      | 28     | 84      | 2      | 0      | 21      | /1     | 9       | 5              | 13      | 18       | 23      | 20      | 4      | 10         | 0      | 34            | 5       | 1       | 23        | 0       | 10     | 10     | 1    | 8      | 221    | ND  |
| ME       | 113    | 0        | 45       | 0       | 154    | 3      | 69     | 11      | (      | 0      | 49      | 98     | 2       | 1              | 83      | 3        | 76      | 16      | 0      | 59         | 69     | 100           | 3       | 1       | 260       | 0       | 3      | 3      | 1    | 1      | 5      | ME  |
| MK       | 164    | 0        | 24       | 1       | 27     | 3      | 211    | 14      | 5      | 0      | 31      | 68     | 3       | 1              | 59      | 3        | 58      | 14      | 1      | 396        | 22     | 88            | 3       | 1       | 155       | 0       | 5      | 4      | 1    | 2      | 9      | MK  |
| MT       | 7      | 0        | 27       | 0       | 19     | 4      | 19     | 4       | 6      | 0      | 19      | 48     | 1       | 0              | 180     | 1        | 251     | 20      | 0      | 50         | 29     | 26            | 6       | 1       | 410       | 0       | 2      | 1      | 1    | 0      | 3      | MT  |
| NL       | 0      | 0        | 11       | 0       | 1      | -91    | 1      | 8       | 3      | 0      | 16      | -28    | 13      | 2              | 17      | 5        | 85      | 65      | 0      | 1          | 2      | 6             | 28      | 5       | 6         | 0       | 1      | 6      | 1    | 3      | 1      | NL  |
| NO       | 0      | 0        | 1        | 0       | 0      | -0     | 0      | 6       | 0      | 0      | 2       | 23     | 15      | 3              | 3       | 20       | 12      | 52      | 0      | 0          | 0      | 0             | 10      | 3       | 1         | 0       | 0      | 5      | 0    | 3      | 0      | NO  |
| ΡL       | 0      | 0        | 21       | 0       | 2      | 5      | 3      | 54      | 4      | 0      | 80      | 289    | 28      | 7              | 10      | 22       | 80      | 56      | 0      | 1          | 7      | 38            | 12      | 3       | 15        | 0       | 5      | 24     | 3    | 12     | 4      | PL  |
| ΡT       | 0      | 0        | 2        | 0       | 0      | 1      | 1      | 1       | 1      | 0      | 1       | 9      | 1       | 0              | 722     | 1        | 60      | 19      | 0      | 1          | 1      | 1             | 11      | 1       | 10        | 0       | 0      | 0      | 0    | 0      | 0      | ΡT  |
| RO       | 7      | 0        | 22       | 1       | 16     | 3      | 92     | 47      | 3      | 0      | 31      | 84     | 7       | 3              | 23      | 10       | 34      | 20      | 2      | 16         | 17     | 100           | 4       | 1       | 51        | 0       | 7      | 12     | 1    | 5      | 48     | RO  |
| RS       | 49     | 0        | 47       | 0       | 82     | 4      | 128    | 19      | 5      | 0      | 61      | 119    | 4       | 1              | 46      | 6        | 58      | 21      | 1      | 44         | 54     | 188           | 4       | 1       | 131       | 0       | 4      | 6      | 1    | 2      | 9      | RS  |
| RU       | 0      | 0        | 1        | 4       | 0      | 1      | 1      | 18      | 0      | 0      | 2       | 13     | 4       | 5              | 3       | 19       | 6       | 9       | 2      | 1          | 0      | 1             | 2       | 1       | 3         | 0       | 55     | 6      | 0    | 4      | 1      | RU  |
| SE       | 0      | 0        | 1        | 0       | 0      | 1      | 0      |         | 0      | 0      | 5       | 48     | 34      | 5              | 2       | 41       | 16      | 61      | 0      | 0          | 0      | 1             | 11      | 3       | 1         | 0       | 1      | 8      | 0    | 7      | 0      | SE  |
| SL       | 2      | 0        | ±<br>112 | 0       | 23     | 6      | 12     | 11      | 10     | 0      | 00      | 301    | 34<br>2 | 1              | 62      | 2        | 167     | 10      | 0      | 7          | 263    | 1/2           | 7       | 1       | 401       | 0       | 1      | 1      | 2    | י<br>2 | 2      | SL  |
| 51       | 1      | 0        | -13      | 0       | 10     | 6      | 10     | 20      | 19     | 0      | 101     | 264    | 11      | 2              | 202     | 10       | 101     | 40      | 0      | 2          | 205    | 260           | 7       | 2       | 401       | 0       | 2      | 10     | 2    | 4      | - 0    | ci/ |
| SN<br>TI | 1      | 0        | 01       | 0       | 12     | 0      | 10     | 29      | 9      | 0      | 191     | 204    | 11      | 2              | 20      | 10       | 00      | 40      | 0      | с<br>С     | 30     | 200           | 1       | 2       | 10        | 10      | 3      | 10     | 2    | 4      | 0      | 21  |
| IJ       | 1      | 4        | 2        | 9       | 1      | 0      | 2      | 2       | 1      | 0      | 1       | 4      | 0       | 0              | 14      | 1        | 1       | 1       | 4      | 3          | 1      | 2             | 0       | 0       | 10        | 42      | 64     | 0      | 0    | 0      | 1      | 11  |
| IM       | 1      | 6        | 3        | 27      | 1      | 1      | 3      | 1       | 1      | 0      | 2       | 10     | 1       | 1              | 13      | 4        | 11      | 4       | 10     | 5          | 1      | 3             | 1       | 0       | 10        | 2       | 145    | 2      | 0    | 1      | 1      | IM  |
| TR       | 6      | 19       | 7        | 20      | 5      | 1      | 37     | 17      | 2      | 10     | 6       | 20     | 2       | 1              | 32      | 3        | 28      | 6       | 25     | 67         | 5      | 11            | 1       | 0       | 50        | 0       | 11     | 4      | 0    | 2      | 10     | TR  |
| UA       | 1      | 0        | 9        | 3       | 3      | 2      | 14     | 104     | 2      | 0      | 19      | 68     | 11      | 6              | 11      | 19       | 23      | 22      | 3      | 7          | 5      | 26            | 5       | 1       | 18        | 0       | 22     | 20     | 1    | 9      | 25     | UA  |
| UZ       | 1      | 4        | 3        | 13      | 1      | 1      | 3      | 7       | 1      | 0      | 2       | 10     | 1       | 1              | 12      | 5        | 11      | 4       | 6      | 4          | 1      | 3             | 1       | 0       | 10        | 26      | 207    | 2      | 0    | 1      | 1      | UZ  |
| ATL      | 0      | 0        | 0        | 0       | 0      | 0      | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0              | 2       | 0        | 2       | 1       | 0      | 0          | 0      | 0             | 1       | 0       | 0         | 0       | 0      | 0      | 0    | 0      | 0      | ATL |
| BAS      | 0      | 0        | 1        | 0       | 0      | -1     | 0      | 7       | 0      | 0      | 3       | 35     | 14      | 9              | 1       | 31       | 9       | 36      | 0      | 0          | 0      | 1             | 8       | 1       | 0         | 0       | 1      | 8      | 0    | 9      | 0      | BAS |
| BLS      | 0      | 0        | 1        | 2       | 1      | 0      | 10     | 9       | 0      | 0      | 2       | 6      | 1       | 1              | 2       | 2        | 3       | 2       | 8      | 5          | 1      | 3             | 0       | 0       | 4         | 0       | 4      | 2      | 0    | 1      | 5      | BLS |
| MED      | 4      | 0        | 6        | 0       | 4      | 1      | 17     | 2       | 1      | 1      | 4       | 10     | 0       | 0              | 27      | 1        | 40      | 4       | 0      | 42         | 9      | 6             | 1       | 0       | 57        | 0       | 1      | 1      | 0    | 0      | 2      | MED |
| NOS      | ∩      | n        | n        | ۰<br>۱  | n      | -3     | <br>   | 1       | 0      | 0      | 1       | 1      | ې<br>۲  | n              | <br>2   | 2        | R       | . 7     | ñ      | . <u> </u> | ں<br>۱ | n             | 5       | 1       | 1         | n       | 0      | 1      | ñ    | ñ      | -<br>0 | NOS |
| Δςτ      | 1      | 2        | 2        | 12      | 1      | ۰<br>۱ | 1      | -<br>2  | 1      | ت<br>۲ | 1       | ۲<br>۲ | 0       | n              | 10      | - 1      | 7       | 1       | 1      | 10         | 1      | о<br>С        | n       | ٠<br>١  | 10        | 11      | 61     | 1      | n    | n      | 1      | Δςτ |
|          | 1<br>N | ر<br>د   | 2<br>ت   | ں<br>10 | т<br>2 | 1      | 4<br>0 | 2<br>1  | ר<br>ד | 1      | 2       | 11     | 0       | 0              | 101     | ۰<br>۲   | ،<br>۵۵ | 0       | τ<br>Λ | 70         | 1      | <u>∠</u><br>л | 0<br>n  | n       | 61        | Λ<br>14 | ۰<br>۱ | V<br>T | 0    | 0<br>0 | 1      |     |
| EVC      | 2      | U<br>2   | 11       | 10      | Л      | с<br>Т | 10     | 1<br>01 | 2<br>E | 1      | 3<br>10 | 10     | ں<br>د  | 1              | 101     | 17       | 60      | 0<br>17 | ں<br>د | 24<br>1 /  | 4      | 4<br>10       | ے<br>۲  | 0       | 20        | 11      | 00     | 7      | 1    | U<br>1 | T<br>T | EVC |
|          | ۲<br>۲ | 3        | 11       | 10      | 4      | -0     | 12     | 21      | 5      | 1      | 12      | 42     | 0       | 4              | 54      | 1/       | 00      | 1/      | b<br>Q | 14         | 0      | 13            | 5<br>15 | 2       | 3ŏ<br>104 | 11      | ٥9     | 1      | 1    | 4      | 4      | EXC |
| ΕU       | . 4    | 0        | 38       | 0       | 7      | -3     | 33     | 16      | 12     | 1      | 35      | 118    | 12      | 5              | 204     | 24       | 214     | -38     | 0      | 33         | 19     | 38            | 15      | 2       | 124       | 0       | 2      | 11     | 2    | 7      | 5      | ΕU  |
|          | AL     | ΑМ       | AT       | ΑZ      | ΒA     | BE     | ВG     | ΒY      | CH     | CY     | CZ      | DΕ     | DΚ      | EΕ             | ES      | F١       | FR      | GB      | GE     | GR         | HR     | ΗU            | ΙĒ      | IS      | IT        | KG      | ΚZ     | LT     | LU   | LV     | MD     |     |

Table C.4 Cont.: 2016 country-to-country blame matrices for  $AOT40_f^{uc}$ . Units: ppb.h per 15% emis. red. of NO<sub>x</sub>. Emitters  $\rightarrow$ , Receptors  $\downarrow$ .

|     | ME     | MK     | ΜT   | NL   | NO       | PL        | ΡT     | RO       | RS      | RU         | SE      | SI  | SK      | ТJ       | ТΜ     | TR  | UA     | UZ  | ATL | BAS | BLS      | MED | NOS  | AST        | NOA     | BIC        | DMS | VOL | EXC  | EU         |     |
|-----|--------|--------|------|------|----------|-----------|--------|----------|---------|------------|---------|-----|---------|----------|--------|-----|--------|-----|-----|-----|----------|-----|------|------------|---------|------------|-----|-----|------|------------|-----|
| AL  | 78     | 130    | 1    | 3    | 4        | 80        | 8      | 76       | 296     | 57         | 3       | 6   | 24      | 0        | 0      | 31  | 53     | 0   | 24  | 5   | 10       | 328 | 9    | 2          | 91      | 714        | 0   | 0   | 2703 | 1235       | AL  |
| AM  | 1      | 1      | 0    | 0    | 3        | 13        | 2      | 17       | 6       | 181        | 2       | 1   | 2       | 0        | 17     | 265 | 59     | 6   | 7   | 3   | 36       | 30  | 3    | 848        | 37      | 669        | 0   | 0   | 1908 | 144        | AM  |
| AT  | 1      | 1      | 0    | 0    | 7        | 96        | 7      | 29       | 15      | 35         | 6       | 71  | 33      | 0        | 0      | 3   | 23     | 0   | 40  | 8   | 1        | 43  | 23   | 0          | 18      | 575        | 0   | 0   | 2467 | 2268       | AT  |
| AZ  | 1      | 1      | 0    | 0    | 5        | 14        | 2      | 14       | 4       | 408        | 4       | 1   | 2       | 0        | 30     | 83  | 77     | 11  | 7   | 5   | 29       | 16  | 4    | 517        | 17      | 596        | 0   | 0   | 1789 | 128        | AZ  |
| BA  | 44     | 5      | 0    | 6    | 6        | 138       | 8      | 78       | 206     | 52         | 4       | 16  | 54      | 0        | 0      | 12  | 50     | 0   | 28  | 6   | 5        | 140 | 17   | 1          | 54      | 667        | 0   | 0   | 2463 | 1556       | BA  |
| BE  | 0      | 0      | 0    | -129 | 23       | 39        | 6      | 3        | 2       | 27         | 11      | 2   | 5       | 0        | 0      | 1   | 7      | 0   | 65  | 10  | 0        | 7   | -97  | 0          | 4       | 462        | 0   | 0   | 19   | -63        | BE  |
| BG  | 11     | 28     | 0    | 3    | 7        | 126       | 4      | 354      | 170     | 220        | 7       | 5   | 28      | 0        | 0      | 51  | 258    | 0   | 16  | 12  | 74       | 63  | 12   | 3          | 32      | 652        | 0   | 0   | 2564 | 1688       | BG  |
| ΒY  | 0      | 0      | 0    | 5    | 29       | 275       | 1      | 16       | 4       | 403        | 43      | 1   | 11      | 0        | 0      | 3   | 94     | 0   | 26  | 77  | 2        | 2   | 38   | 2          | 1       | 571        | 0   | 0   | 1655 | 767        | BY  |
| СН  | 1      | 1      | 0    | 1    | 4        | 22        | 10     | 5        | 5       | 18         | 3       | 6   | 4       | 0        | 0      | 3   | 8      | 0   | 53  | 4   | 0        | 52  | 23   | 0          | 21      | 625        | 0   | 0   | 2281 | 1619       | СН  |
| CY  | 4      | 7      | 1    | 1    | 2        | 20        | 4      | 43       | 21      | 98         | 2       | 2   | 5       | 0        | 1      | 824 | 63     | 1   | 12  | 3   | 44       | 790 | 5    | 56         | 93      | 901        | 0   | 0   | 2122 | 1052       | CY  |
| C7  | 1      | 1      | 0    | 5    | 18       | 264       | 4      | 37       | 19      | 58         | 14      | 16  | 74      | 0        | 0      | 2   | 40     | 0   | 42  | 18  | 1        | 15  | 40   | 0          | 5       | 587        | 0   | 0   | 2207 | 2019       | C7  |
| DE  | 0      | 0      | 0    | _34  | 25       | 115       | 4      | a        | 13      | 44         | 20      | 3   | 11      | 0        | 0      | 1   | 14     | 0   | 61  | 18  | 0        | 8   | 25   | 0          | 4       | 556        | 0   | 0   | 1142 | 1005       | DE  |
|     | 0      | 0      | 0    | -25  | 63       | 87        | 1      | 2        | 1       | 08         | 73      | 0   | 1       | 0        | 0      | 0   | 6      | 0   | 66  | 28  | 0        | 1   | 01   | 1          | 0       | 5/2        | 0   | 0   | 626  | 133        |     |
| FF  | 0      | 0      | 0    | -25  | 35       | 13/       | 0      | 2        | 1       | 282        | 116     | 0   | 3       | 0        | 0      | 1   | 0      | 0   | 36  | 210 | 0        | 1   | 52   | 0          | 0       | 5/1        | 0   | 0   | 1162 | 708        | FF  |
| ES  | 0      | 0      | 0    | 1    | 3        | 2.74      | 103    | 2        | 1       | 202<br>Q   | 2110    | 2   | 1       | 0        | 0      | 1   | 3<br>2 | 0   | 19/ | 210 | 0        | 155 | 11   | 0          | 111     | 064        | 0   | 0   | 1775 | 1752       | ES  |
|     | 0      | 0      | 0    | 1    | 26<br>26 | 0<br>27   | 192    | 2        | 1       | 0          | 02      | 2   | 1       | 0        | 0      | 1   | 2      | 0   | 24  | 02  | 0        | 155 | 20   | 0          | 111     | 400        | 0   | 0   | 1115 | 1102       |     |
|     | 0      | 0      | 0    | 4    | 12       | 31<br>22  | 17     | 1        | 0       | 100        | 95      | 0   | 1       | 0        | 0      | 1   | 4      | 0   | 100 | 95  | 0        | 0   | 29   | 0          | 20      | 420<br>605 | 0   | 0   | 1400 | 402        |     |
| FR  | 0      | 0      | 0    | -0   | 13       | 23        | 1/     | 3        | 3       | 22         | 0<br>10 | 4   | 3       | 0        | 0      | 1   | 0      | 0   | 109 | 1   | 0        | 00  | 28   | 0          | 20      | 025        | 0   | 0   | 1480 | 1403       | FR  |
| GB  | 0      | 0      | 0    | -17  | 42       | 22        | 1      | 2        | 1       | 29         | 19      | 1   | 2       | 0        | 10     | 171 | 4      | 0   | 18  | 14  | 114      | 3   | 13   | 0          | 2       | 450        | 0   | 0   | 130  | 48         | GB  |
| GE  | 2      | 2      | 0    | 0    | 5        | 21        | 3      | 29       | 8       | 321        | 5       | 1   | 2       | 0        | 10     | 1/1 | 101    | 6   | 9   | 6   | 114      | 28  | 5    | 213        | 30      | 610        | 0   | 0   | 1/91 | 189        | GE  |
| GL  | -0     | 0      | 0    | 0    | 0        | 0         | 0      | 0        | 0       | 0          | 0       | 0   | 0       | 0        | 0      | 0   | 0      | 0   | 1   | 0   | 0        | 0   | 0    | 0          | 0       | 54         | 0   | 0   | 3    | 1          | GL  |
| GR  | 11     | 52     | 1    | 3    | 5        | 78        | 6      | 130      | 104     | 150        | 4       | 3   | 16      | 0        | 1      | 146 | 144    | 1   | 20  | 8   | 52       | 381 | 10   | 6          | 78      | 742        | 0   | 0   | 2592 | 1850       | GR  |
| HR  | 10     | 2      | 0    | 6    | 6        | 134       | 8      | 69       | 134     | 50         | 5       | 70  | 60      | 0        | 0      | 6   | 41     | 0   | 34  | 7   | 3        | 190 | 20   | 1          | 38      | 617        | 0   | 0   | 2614 | 2195       | HR  |
| HU  | 4      | 2      | 0    | 5    | 11       | 292       | 5      | 205      | 105     | 86         | 8       | 25  | 179     | 0        | 0      | 5   | 85     | 0   | 29  | 15  | 4        | 42  | 26   | 1          | 20      | 588        | 0   | 0   | 2557 | 2184       | HU  |
| IE  | 0      | 0      | 0    | -7   | 24       | 23        | 1      | 2        | 0       | 20         | 12      | 1   | 2       | 0        | 0      | 0   | 5      | 0   | 61  | 10  | 0        | 2   | 21   | 0          | 1       | 383        | 0   | 0   | 330  | 272        | IE  |
| IS  | 0      | 0      | 0    | 1    | 11       | 3         | 2      | 0        | 0       | 4          | 4       | 0   | 0       | 0        | 0      | 0   | 0      | 0   | 41  | 3   | 0        | 0   | 11   | 0          | 0       | 298        | 0   | 0   | 120  | 52         | IS  |
| IT  | 5      | 3      | 1    | 3    | 4        | 44        | 13     | 22       | 28      | 25         | 3       | 42  | 15      | 0        | 0      | 7   | 17     | 0   | 46  | 4   | 2        | 384 | 16   | 1          | 86      | 648        | 0   | 0   | 2422 | 2253       | IT  |
| KG  | 0      | 1      | 0    | 0    | 1        | 5         | 2      | 5        | 2       | 107        | 1       | 1   | 1       | 60       | 65     | 29  | 12     | 586 | 4   | 1   | 3        | 9   | 1    | 595        | 18      | 854        | 0   | 0   | 1873 | 79         | KG  |
| ΚZ  | 0      | 0      | 0    | 1    | 7        | 13        | 1      | 6        | 2       | 706        | 8       | 0   | 1       | 1        | 8      | 9   | 28     | 24  | 8   | 7   | 3        | 4   | 5    | 73         | 5       | 944        | 0   | 0   | 1291 | 104        | ΚZ  |
| LT  | 0      | 0      | 0    | 9    | 33       | 273       | 1      | 6        | 3       | 286        | 66      | 1   | 8       | 0        | 0      | 1   | 27     | 0   | 36  | 145 | 0        | 2   | 52   | 1          | 1       | 563        | 0   | 0   | 1466 | 1005       | LT  |
| LU  | 0      | 0      | 0    | -23  | 16       | 49        | 8      | 5        | 2       | 23         | 10      | 2   | 5       | 0        | 0      | 1   | 8      | 0   | 60  | 7   | 0        | 11  | 11   | 0          | 5       | 486        | 0   | 0   | 649  | 575        | LU  |
| LV  | 0      | 0      | 0    | 9    | 31       | 176       | 1      | 4        | 2       | 284        | 84      | 1   | 5       | 0        | 0      | 1   | 17     | 0   | 35  | 181 | 1        | 1   | 52   | 0          | 0       | 558        | 0   | 0   | 1287 | 876        | LV  |
| MD  | 2      | 2      | 0    | 4    | 16       | 203       | 2      | 235      | 20      | 321        | 17      | 2   | 19      | 0        | 0      | 31  | 491    | 0   | 17  | 28  | 38       | 17  | 21   | 4          | 11      | 659        | 0   | 0   | 2018 | 804        | MD  |
| ME  | 564    | 19     | 1    | 4    | 5        | 115       | 9      | 84       | 301     | 57         | 3       | 7   | 39      | 0        | 0      | 24  | 57     | 0   | 25  | 5   | 8        | 243 | 12   | 2          | 84      | 749        | 0   | 0   | 2524 | 1202       | ME  |
| MK  | 18     | 443    | 1    | 3    | 4        | 107       | 6      | 133      | 348     | 89         | 4       | 4   | 31      | 0        | 0      | 53  | 84     | 0   | 20  | 7   | 18       | 131 | 10   | 3          | 73      | 725        | 0   | 0   | 2701 | 1434       | MK  |
| ΜТ  | 6      | 3      | -559 | 3    | 4        | 33        | 15     | 25       | 25      | 18         | 2       | 11  | 9       | 0        | 0      | 19  | 18     | 0   | 47  | 3   | 4        | 366 | 13   | 1          | 192     | 708        | 0   | 0   | 766  | 631        | MT  |
| NL  | 0      | 0      | 0    | -771 | 38       | 53        | 3      | 4        | 2       | 40         | 13      | 1   | 6       | 0        | 0      | 1   | 8      | 0   | 63  | 14  | 0        | 3   | -149 | 0          | 1       | 458        | 0   | 0   | -434 | -541       | NL  |
| NO  | 0      | 0      | 0    | -1   | 120      | 20        | 1      | 1        | 0       | 44         | 44      | 0   | 0       | 0        | 0      | 0   | 2      | 0   | 60  | 23  | 0        | 0   | 51   | 0          | 0       | 403        | 0   | 0   | 388  | 212        | NO  |
| PL  | 0      | 0      | 0    | 3    | 33       | 582       | 2      | 30       | 9       | 143        | 36      | 4   | 38      | 0        | 0      | 2   | 70     | 0   | 40  | 70  | 1        | 5   | 55   | 1          | 2       | 570        | 0   | 0   | 1743 | 1411       | PL  |
| РТ  | 0      | 0      | 0    | 1    | 3        | 4         | 839    | 1        | 1       | 9          | 2       | 1   | 1       | 0        | 0      | 1   | 2      | 0   | 329 | 2   | 0        | 54  | 8    | 0          | 65      | 923        | 0   | 0   | 1711 | 1691       | РТ  |
| RO  | 8      | 6      | 0    | 3    | 10       | 197       | 3      | 907      | 89      | 188        | 10      | 4   | 35      | 0        | 0      | 24  | 271    | 0   | 17  | 18  | 34       | 28  | 17   | 3          | 20      | 615        | 0   | 0   | 2422 | 1695       | RO  |
| RS  | 49     | 37     | 0    | 4    | 6        | 178       | 6      | 241      | 587     | 88         | 4       | 9   | 61      | 0        | 0      | 18  | 93     | 0   | 21  | 9   | 12       | 73  | 15   | 2          | 44      | 625        | 0   | 0   | 2477 | 1429       | RS  |
| RU  | 0      | 0      | 0    | 1    | 10       | 20        | 0      | 4        | 1       | 701        | 13      | 0   | 1       | 0        | 1      | 5   | 32     | 1   | 11  | 16  | 4        | 2   | 7    | 8          | 2       | 622        | 0   | 0   | 956  | 122        | RU  |
| SE  | 0      | 0      | 0    | 2    | 64       | 30        | 1      | 1        | 0       | 75         | 141     | 0   | 1       | 0        | 0      | 0   | 3      | 0   | 50  | 74  | 0        | 0   | 50   | 0          | 0       | 460        | 0   | 0   | 583  | 428        | SE  |
| SL  | 2      | 1      | 0    | 2    | 6        | 105       | 7      | 16       | 37      | 37         | 6       | 103 | 11      | 0        | 0      | 1   | 28     | 0   | 37  | 8   | 2        | 136 | 18   | 0          | 22      | 5/0        | 0   | 0   | 2727 | 2553       | SL  |
| SK  | 2      | 1      | 0    | 7    | 16       | 162       | 1      | 117      | 11      | 01         | 10      | 17  | 130     | 0        | 0      | 2   | 08     | 0   | 30  | 20  | 2        | 25  | 35   | 1          | 11      | 58/        | 0   | 0   | 2/2/ | 2333       | SK  |
|     | 2      | 1      | 0    | 0    | 10       | 402       | 4<br>2 | 117      | 44<br>0 | 70         | 10      | 11  | 430     | 244      | 170    | 21  | 10     | 206 | 20  | 20  | 2        | 25  | 1    | E00        | 10      | 000        | 0   | 0   | 1025 | 61         |     |
| тм  | 1      | 1      | 0    | 1    | 3        | 11        | 2      | 4        | 2       | 210        | 1       | 1   | 2       | 244<br>1 | 1/2    | 20  | 33     | 103 | 5   | 1   | 5        | 0   | 3    | 090<br>401 | 10      | 909<br>910 | 0   | 0   | 045  | 104        | тм  |
|     | 2      | 5      | 0    | 1    | 1        | 20        | 2      | 56       |         | J19<br>J21 | 4       | 1   | 2       | 4        | 145    | 002 | 116    | 105 | 10  | 4   | 04       | 1/0 | 5    | 401<br>207 | 60      | 040        | 0   | 0   | 1600 | 207        |     |
|     | 3<br>1 | 2<br>1 | 0    | 1    | 4        | 32<br>104 | 4      | 50<br>01 | 20      | 201        | 4       | 1   | )<br>15 | 0        | 3<br>1 | 003 | 110    | 1   | 12  | 22  | 94<br>20 | 140 | 22   | 201        | 00      | 912        | 0   | 0   | 1090 | 597<br>610 |     |
| UA  | 1      | 1      | 0    | 3    | 19       | 194       | 2      | 81       | 11      | 521        | 21      | 2   | 15      | 0        | 1      | 22  | 481    | 1   | 18  | 33  | 30       | 13  | 23   | 1          | 0<br>11 | 020        | 0   | 0   | 1030 | 100        | UA  |
| UZ  | 0      | 1      | 0    | 1    | 3        | 10        | 2      | (        | 3       | 300        | 4       | 1   | 1       | 22       | /0     | 21  | 21     | 280 | 6   | 4   | 4        | (   | 3    | 226        | 11      | 100        | Ű   | 0   | 1154 | 100        | UZ  |
| AIL | 0      | 0      | 0    | -0   | 1        | 0         | 1      | 0        | 0       | 2          | 0       | 0   | 0       | 0        | 0      | 0   | 0      | 0   | 5   | 0   | 0        | 0   | 1    | 0          | 1       | 16         | 0   | 0   | 12   | 8          | AIL |
| BAS | 0      | 0      | 0    | -1   | 19       | 43        | 0      | 1        | 0       | 51         | 57      | 0   | 1       | 0        | 0      | 0   | 2      | 0   | 20  | 35  | 0        | 0   | 27   | 0          | 0       | 203        | 0   | 0   | 347  | 265        | BAS |
| BLS | 0      | 0      | 0    | 0    | 2        | 14        | 0      | 21       | 3       | 123        | 3       | 0   | 2       | 0        | 0      | 27  | 76     | 0   | 2   | 4   | 58       | 6   | 2    | 3          | 3       | 103        | 0   | 0   | 348  | 86         | BLS |
| MED | 2      | 2      | 0    | 1    | 1        | 10        | 3      | 12       | 8       | 20         | 1       | 2   | 2       | 0        | 0      | 36  | 16     | 0   | 10  | 1   | 9        | 147 | 3    | -3         | 25      | 136        | 0   | 0   | 359  | 259        | MED |
| NOS | 0      | 0      | 0    | -10  | 9        | 5         | 0      | 0        | 0       | 6          | 5       | 0   | 0       | 0        | 0      | 0   | 1      | 0   | 16  | 3   | 0        | 1   | -18  | 0          | 0       | 74         | 0   | 0   | 47   | 28         | NOS |
| AST | 0      | 1      | 0    | 0    | 1        | 4         | 1      | 6        | 3       | 79         | 1       | 0   | 1       | 5        | 42     | 74  | 13     | 32  | 3   | 1   | 5        | 29  | 1    | 1580       | 20      | 804        | 0   | 0   | 424  | 74         | AST |
| NOA | 1      | 1      | 1    | 0    | 1        | 6         | 31     | 6        | 5       | 7          | 1       | 1   | 2       | 0        | 0      | 19  | 6      | 0   | 73  | 1   | 2        | 180 | 4    | -0         | 667     | 579        | 0   | 0   | 422  | 371        | NOA |
| EXC | 2      | 2      | 0    | -2   | 14       | 50        | 11     | 28       | 12      | 452        | 17      | 3   | 7       | 3        | 10     | 44  | 52     | 22  | 27  | 18  | 10       | 29  | 12   | 59         | 13      | 678        | 0   | 0   | 1210 | 439        | EXC |
| EU  | 2      | 3      | 0    | -10  | 23       | 112       | 44     | 76       | 21      | 80         | 34      | 10  | 20      | 0        | 0      | 10  | 41     | 0   | 74  | 34  | 6        | 77  | 25   | 1          | 29      | 611        | 0   | 0   | 1485 | 1256       | EU  |
|     | ME     | MK     | MT   | NL   | NO       | PL        | ΡT     | RO       | RS      | RU         | SE      | SI  | SK      | ТJ       | ТΜ     | TR  | UA     | UZ  | ATL | BAS | BLS      | MED | NOS  | AST        | NOA     | BIC        | DMS | VOL | EXC  | EU         |     |

Table C.5: 2016 country-to-country blame matrices for  $AOT40_f^{uc}$ . Units: ppb.h per 15% emis. red. of VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|           | AL  | AM     | AT          | AZ | BA     | BF     | BG     | BY      | СН     | CY | CZ     | DE      | DK     | ΕE | ES      | Η      | FR      | GB              | GE     | GR     | HR | HU     | IF     | IS     | IT                  | KG       | ΚZ | LT     | LU | LV | MD     |            |
|-----------|-----|--------|-------------|----|--------|--------|--------|---------|--------|----|--------|---------|--------|----|---------|--------|---------|-----------------|--------|--------|----|--------|--------|--------|---------------------|----------|----|--------|----|----|--------|------------|
| AL        | 100 | 0      | 11          | 0  | 7      | 5      | 6      | 9       | 6      | 0  | 19     | 71      | 2      | 0  | 26      | 1      | 39      | 33              | 0      | 30     | 10 | 15     | 2      | 0      | 110                 | 0        | 1  | 1      | 1  | 1  | 1      | AL         |
| AM        | 1   | 128    | 2           | 35 | 1      | 1      | 2      | 8       | 1      | 1  | 4      | 17      | 1      | 0  | 6       | 1      | 8       | 8               | 19     | 5      | 1  | 2      | 1      | 0      | 15                  | 0        | 2  | 1      | 0  | 1  | 1      | AM         |
| AT        | 1   | 0      | 141         | 0  | 1      | 17     | 1      | 9       | 45     | 0  | 47     | 282     | 3      | 0  | 12      | 1      | 82      | 77              | 0      | 1      | 10 | 13     | 4      | 0      | 106                 | 0        | 0  | 1      | 2  | 1  | 1      | AT         |
| ΑZ        | 1   | 11     | 2           | 93 | 1      | 1      | 2      | 12      | 1      | 0  | 5      | 19      | 1      | 1  | 6       | 2      | 9       | 11              | 22     | 5      | 1  | 2      | 1      | 0      | 14                  | 0        | 4  | 1      | 0  | 1  | 1      | ΑZ         |
| BA        | 3   | 0      | 19          | 0  | 19     | 7      | 3      | 10      | 7      | 0  | 29     | 105     | 3      | 0  | 19      | 1      | 41      | 47              | 0      | 6      | 13 | 20     | 3      | 0      | 85                  | 0        | 0  | 1      | 1  | 1  | 1      | BA         |
| BE        | 0   | 0      | 7           | 0  | 0      | 114    | 0      | 11      | 8      | 0  | 9      | 232     | 4      | 0  | 8       | 1      | 116     | 183             | 0      | 0      | 1  | 3      | 6      | 0      | 12                  | 0        | 0  | 2      | 6  | 1  | 0      | BE         |
| BG        | 4   | 0      | 8           | 1  | 2      | 5      | 39     | 21      | 3      | 0  | 17     | 68      | 4      | 1  | 9       | 2      | 23      | 31              | 1      | 26     | 4  | 14     | 2      | 0      | 30                  | 0        | 1  | 3      | 1  | 2  | 3      | BG         |
| ΒY        | 0   | 0      | 3           | 0  | 0      | 7      | 0      | 56      | 2      | 0  | 11     | 68      | 5      | 1  | 2       | 2      | 23      | 45              | 0      | 0      | 1  | 3      | 3      | 0      | 5                   | 0        | 1  | 3      | 1  | 2  | 1      | ΒY         |
| СН        | 0   | 0      | 21          | 0  | 1      | 17     | 1      | 8       | 247    | 0  | 15     | 209     | 2      | 0  | 16      | 1      | 153     | 64              | 0      | 1      | 4  | 3      | 3      | 0      | 203                 | 0        | 0  | 1      | 3  | 1  | 0      | СН         |
| CY        | 4   | 1      | 8           | 2  | 3      | 4      | 9      | 17      | 4      | 34 | 13     | 52      | 2      | 1  | 20      | 2      | 33      | 23              | 2      | 43     | 5  | 10     | 1      | 0      | 64                  | 0        | 1  | 2      | 1  | 1  | 4      | CY         |
| C7        | 0   | 0      | 28          | 0  | 1      | 17     | 1      | 11      | 12     | 0  | 131    | 235     | 5      | 1  | 8       | 2      | 65      | 86              | 0      | 1      | 4  | 13     | 4      | 0      | 27                  | 0        | 0  | 2      | 2  | 1  | 1      | C7         |
| DE        | 0   | 0      | 20          | 0  | 0      | 35     | 0      | 10      | 10     | 0  | 28     | 384     | 6      | 1  | 8       | 2      | 90      | 125             | 0      | 0      | 1  | 0      | 5      | 0      | 10                  | 0        | 0  | 2      | 4  | 1  | 0      | DE         |
| DK        | 0   | 0      | 1           | 0  | 0      | 20     | 0      | 11      | 1      | 0  | 7      | 120     | 46     | 1  | 2       | 2      | 35      | 148             | 0      | 0      | 0  | 1      | 7      | 0      | 1                   | 0        | 0  | 3      | 1  | 2  | 0      | DK         |
| FF        | 0   | 0      | 1           | 0  | 0      | 7      | 0      | 0       | 1      | 0  | 7      | 58      | 7      | 6  | 1       | 8      | 17      | 63              | 0      | 0      | 0  | 1      | 4      | 0      | 1                   | 0        | 0  | 3      | 1  | 4  | 0      | FF         |
| FS        | 0   | 0      | 1           | 0  | 0      | י<br>2 | 0      | 2       | 1      | 0  | 1      | 30      | 1      | 0  | 218     | 1      | 13      | 28              | 0      | 0      | 1  | 2      | 2      | 0      | 2/                  | 0        | 0  | 0      | 0  | 0  | 0      | FS         |
| EI        | 0   | 0      | -<br>-<br>1 | 0  | 0      | 1      | 0      | 2       | -      | 0  | т<br>2 | 20      | 1      | 1  | 210     | 6      | 10      | 20              | 0      | 0      | 0  | ے<br>م | 2      | 0      | 2 <del>7</del><br>1 | 0        | 0  | 1      | 0  | 1  | 0      | EI         |
|           | 0   | 0      | 1           | 0  | 0      | 10     | 0      | 5       | 14     | 0  | 10     | 100     | 4      | 1  | 22      | 1      | 10      | 02              | 0      | 1      | 0  | 2      | 4      | 0      | E 4                 | 0        | 0  | 1      | 0  | 1  | 0      |            |
|           | 0   | 0      | י<br>ר      | 0  | 0      | 10     | 0      | /<br>E  | 14     | 0  | 10     | 100     | 5      | 0  | 33<br>2 | 1      | 100     | 95              | 0      | 1      | 2  | 1      | 4      | 0      | 54                  | 0        | 0  | 1      | 2  | 1  | 0      |            |
| GD        | 1   | 0      | 2           | 20 | 1      | 10     | 0      | 5<br>11 | 2      | 0  | 4      | 45      | 5      | 0  | С       | 1      | 29      | 250             | 0      | 0      | 1  | 1      | 0      | 0      | 10                  | 0        | 0  | 1      | 1  | 1  | 1      | GD         |
| GE        | 1   | 9      | 3           | 32 | 1      | 1      | 2      | 11      | 2      | 0  | 5      | 21      | 2      | 0  | 0       | T      | 9       | 11              | 60     | 1      | 1  | 3      | 1      | 0      | 10                  | 0        | 2  | 1      | 0  | 1  | 1      | GE         |
| GL        | 0   | 0      | 0           | 0  | 0      | 0      | 0      | 0       | 0      | 0  | 0      | 0       | 0      | 0  | 0       | 0      | 0       | 0               | 0      | 0      | 0  | 0      | 0      | -0     | 0                   | 0        | 0  | 0      | 0  | 0  | 0      | GL         |
| GR        | 11  | 0      | 9           | 1  | 4      | 5      | 16     | 17      | 4      | 0  | 18     | 67      | 3      | 1  | 20      | 2      | 34      | 34              | 1      | 166    | 6  | 14     | 2      | 0      | 75                  | 0        | 1  | 2      | 1  | 1  | 3      | GR         |
| HR        | 2   | 0      | 38          | 0  | 8      | 10     | 3      | 10      | 10     | 0  | 45     | 148     | 3      | 0  | 22      | 2      | 55      | 61              | 0      | 5      | 38 | 26     | 3      | 0      | 125                 | 0        | 0  | 2      | 1  | 1  | 1      | HR         |
| HU        | 1   | 0      | 33          | 0  | 3      | 10     | 3      | 13      | 8      | 0  | 46     | 139     | 5      | 1  | 11      | 2      | 42      | 57              | 0      | 2      | 9  | 58     | 3      | 0      | 48                  | 0        | 0  | 2      | 1  | 1  | 2      | ΗU         |
| IE        | 0   | 0      | 2           | 0  | 0      | 6      | 0      | 5       | 1      | 0  | 4      | 30      | 3      | 0  | 2       | 1      | 15      | 117             | 0      | 0      | 0  | 1      | 20     | 0      | 4                   | 0        | 0  | 1      | 0  | 1  | 0      | IE         |
| IS        | 0   | 0      | 0           | 0  | 0      | 1      | 0      | 1       | 0      | 0  | 0      | 4       | 1      | 0  | 1       | 0      | 2       | 12              | 0      | 0      | 0  | 0      | 1      | 1      | 1                   | 0        | 0  | 0      | 0  | 0  | 0      | IS         |
| IT        | 2   | 0      | 37          | 0  | 4      | 11     | 2      | 8       | 22     | 0  | 27     | 136     | 2      | 0  | 47      | 1      | 98      | 59              | 0      | 7      | 18 | 13     | 3      | 0      | 700                 | 0        | 0  | 1      | 1  | 1  | 1      | IT         |
| KG        | 0   | 1      | 1           | 3  | 0      | 1      | 1      | 4       | 1      | 0  | 2      | 9       | 0      | 0  | 4       | 1      | 6       | 4               | 1      | 2      | 1  | 1      | 0      | 0      | 9                   | 85       | 22 | 0      | 0  | 0  | 0      | KG         |
| ΚZ        | 0   | 0      | 1           | 1  | 0      | 1      | 1      | 7       | 1      | 0  | 3      | 15      | 1      | 0  | 3       | 1      | 6       | 11              | 1      | 1      | 0  | 1      | 1      | 0      | 6                   | 6        | 19 | 1      | 0  | 1  | 1      | ΚZ         |
| LT        | 0   | 0      | 3           | 0  | 0      | 10     | 0      | 23      | 1      | 0  | 11     | 79      | 9      | 1  | 1       | 3      | 23      | 74              | 0      | 0      | 1  | 2      | 5      | 0      | 4                   | 0        | 1  | 14     | 1  | 4  | 0      | LT         |
| LU        | 0   | 0      | 11          | 0  | 0      | 51     | 0      | 11      | 9      | 0  | 14     | 284     | 3      | 0  | 11      | 1      | 128     | 129             | 0      | 0      | 1  | 3      | 4      | 0      | 15                  | 0        | 0  | 2      | 40 | 1  | 0      | LU         |
| LV        | 0   | 0      | 2           | 0  | 0      | 8      | 0      | 14      | 1      | 0  | 8      | 62      | 8      | 2  | 1       | 3      | 19      | 71              | 0      | 0      | 0  | 2      | 5      | 0      | 2                   | 0        | 0  | 7      | 1  | 11 | 0      | LV         |
| MD        | 1   | 0      | 5           | 1  | 1      | 6      | 3      | 19      | 2      | 0  | 15     | 64      | 4      | 1  | 4       | 2      | 18      | 37              | 1      | 4      | 2  | 7      | 2      | 0      | 14                  | 0        | 1  | 2      | 1  | 2  | 18     | MD         |
| ME        | 18  | 0      | 12          | 0  | 8      | 6      | 4      | 9       | 6      | 0  | 20     | 79      | 2      | 0  | 22      | 1      | 37      | 34              | 0      | 14     | 9  | 15     | 2      | 0      | 92                  | 0        | 0  | 1      | 1  | 1  | 1      | ME         |
| MK        | 13  | 0      | 9           | 0  | 3      | 5      | 11     | 12      | 4      | 0  | 18     | 66      | 3      | 0  | 17      | 2      | 28      | 28              | 0      | 57     | 5  | 16     | 2      | 0      | 54                  | 0        | 1  | 2      | 1  | 1  | 2      | MK         |
| MT        | 4   | 0      | 14          | 0  | 5      | 8      | 5      | 11      | 6      | 0  | 21     | 81      | 2      | 0  | 64      | 1      | 84      | 48              | 0      | 19     | 11 | 12     | 4      | 0      | 273                 | 0        | 1  | 2      | 1  | 1  | 2      | МΤ         |
| NL        | 0   | 0      | 6           | 0  | 0      | 66     | 0      | 11      | 3      | 0  | 12     | 233     | 7      | 1  | 5       | 1      | 76      | 202             | 0      | 0      | 1  | 3      | 8      | 0      | 5                   | 0        | 0  | 2      | 2  | 1  | 0      | NL         |
| NO        | 0   | 0      | 0           | 0  | 0      | 3      | 0      | 3       | 0      | 0  | 2      | 21      | 5      | 0  | 1       | 1      | 9       | 36              | 0      | 0      | 0  | 0      | 2      | 0      | 1                   | 0        | 0  | 1      | 0  | 1  | 0      | NO         |
| PL        | 0   | 0      | 8           | 0  | 0      | 16     | 1      | 20      | 4      | 0  | 31     | 147     | 8      | 1  | 3       | 2      | 43      | 76              | 0      | 0      | 2  | 7      | 4      | 0      | 11                  | 0        | 1  | 3      | 1  | 2  | 1      | PL         |
| РТ        | 0   | 0      | 2           | 0  | 0      | 2      | 0      | 2       | 2      | 0  | 3      | 22      | 1      | 0  | 108     | 1      | 26      | 23              | 0      | 0      | 1  | 1      | 2      | 0      | 11                  | 0        | 0  | 0      | 0  | 0  | 0      | РТ         |
| RO        | 2   | 0      | 8           | 0  | 2      | 6      | 9      | 19      | 3      | 0  | 17     | 73      | 4      | 1  | 7       | 2      | 22      | 34              | 1      | 4      | 3  | 14     | 2      | 0      | 23                  | 0        | 1  | 2      | 1  | 1  | 4      | RO         |
| RS        | 6   | 0      | 14          | 0  | 6      | 7      | 8      | 13      | 5      | 0  | 27     | 91      | 3      | 0  | 13      | 2      | 31      | 38              | 0      | 11     | 8  | 28     | 2      | 0      | 49                  | 0        | 1  | 2      | 1  | 1  | 2      | RS         |
| RU        | 0   | 0      | 1           | 1  | 0      | 1      | 0      | -0      | 0      | 0  | 2      | 14      | 1      | 1  | 1       | 1      | 5       | 11              | 0      | 1      | 0  | 1      | 1      | 0      | .3                  | 0        | 2  | 1      | 0  | 1  | 0      | RU         |
| SE        | 0   | 0      | 1           | 0  | 0      | 5      | 0      | 4       | 0      | 0  | 3      | 36      | 7      | 1  | 1       | 2      | 12      | 45              | 0      | 0      | 0  | 0      | 3      | 0      | 1                   | 0        | 0  | 1      | 0  | 1  | 0      | SE         |
| SI        | 1   | 0      | 88          | 0  | 3<br>3 | 13     | 2      | 10      | 16     | 0  | 52     | 209     | 3      | 0  | 19      | 2      | 66      | 73              | 0      | 3      | 33 | 21     | 4      | 0      | 192                 | 0        | 0  | 1      | 1  | 1  | 1      | SI         |
| SK        | 1   | 0      | 23          | 0  | 1      |        | 2      | 14      | 7      | 0  | 52     | 133     | 5      | 0  | 7       | 2      | 40      | 57              | 0      | 1      | 6  | 26     | י<br>ג | 0      | 34                  | 0        | 0  | 2      | 1  | 1  | 1      | SK         |
| ті        | 0   | 1      | 1           | 3  | 0      | 0      | 1      | 3       | 1      | 0  | 2      | 8       | 0      | 0  | י<br>ג  | 0      | 4       | 3               | 1      | 1      | 0  | 1      | 0      | 0      | 8                   | 10       | 7  | 0      | 0  | 0  | 0      | ті         |
| тм        | 1   | 2      | 2           | 8  | 0      | 1      | 1      | 8       | 1      | 0  | 4      | 17      | 1      | 0  | 5       | 1      | 8       | q               | 2      | 3      | 1  | 2      | 1      | 0      | 11                  | 10       | 8  | 1      | 0  | 1  | 1      | тм         |
| TR        | 2   | 4      | 1           | 1  | 1      | 3      | 5      | 12      | 2      | 1  | ۲<br>۵ | 22      | 2      | 0  | 11      | 1      | 17      | 16              | 1      | 16     | 2  | 5      | 1      | 0      | 30                  | 0        | 1  | 1      | 0  | 1  | 2      | TR         |
|           | 2   | 4      | 4           | 4  | 1      | 5      | с<br>С | 22      | 2      | 0  | 12     | 52      | 2      | 1  | 11      | 1<br>2 | 17      | 34              | 1      | 10     | 2  | 5      | 2      | 0      | 12                  | 0        | 2  | 1<br>2 | 1  | 2  | 2      |            |
|           | 0   | 1      | 4<br>2      | 1  | 1      | 1      | 1      | 23      | 2<br>1 | 0  | 2      | 16      | 1      | 1  | 4       | 1      | - 17    | 0<br>0          | 1      | ງ<br>ງ | 1  | 1      | 1      | 0      | 10                  | 15       | 10 | 1      | 0  | 1  | 1      |            |
| 02<br>אדי | 0   | -<br>1 | 2           | 4  | 0      | L<br>L | L<br>L | 1       | 1      | 0  | 3      | 101     | 1      | 0  | 4       | ν<br>Τ | Ŏ<br>1  | ŏ               | L<br>L | 2      | T  | L<br>L | ν<br>Τ | U<br>A | 10                  | тэ<br>тэ | 12 | U<br>T | 0  | T  | T      |            |
|           | 0   | 0      | 0           | 0  | 0      | U<br>- | 0      | 0       | 0      | 0  | U<br>2 | 25      | U      | 0  | T       | 0      | 1       | 2               | 0      | 0      | 0  | 0      | 0      | 0      | 0                   | 0        | 0  | 0      | 0  | 0  | 0      |            |
| DAS       | 0   | 0      | U<br>1      | 0  | 0      | 5<br>1 | U<br>1 | 4       | 0      | 0  | 3      | 35<br>^ | ŏ<br>1 | 2  | U<br>1  | 4      | 9       | ٥ <i>١</i><br>- | 0      | 0      | 0  | U<br>1 | 2      | U      | 0                   | 0        | U  | 2      | 0  | 2  | U<br>1 | DAS        |
| BLS       | 0   | 0      | 1           | 1  | 0      | 1      | 1      | 4       | 0      | 0  | 2      | 9<br>1- | 1      | 0  | 1       | 0      | 3<br>1- | 5               | 2      | 2      | 0  | 1      | U      | U      | 3                   | 0        | U  | 0      | 0  | U  | 1      | BLS<br>MED |
| NOC       | 1   | 0      | 3           | U  | Ţ      | 1      | 2      | 3       | 1      | 0  | 4      | 1/      | 1      | 0  | 12      | 0      | 12      | 9               | 0      | 14     | 2  | 2      | 1      | U      | 38                  | 0        | 0  | 0      | 0  | U  | 1<br>^ | NOC        |
| NUS       | 0   | 0      | 0           | 0  | 0      | 3      | 0      | 1       | 0      | 0  | 1      | 12      | 2      | 0  | 0       | U      | (<br>_  | 28              | 0      | 0      | 0  | 0      | 1      | U      | 1                   | 0        | 0  | 0      | 0  | U  | 0      | NUS        |
| AST       | 1   | 1      | 1           | 4  | 0      | 1      | 1      | 4       | 1      | 1  | 2      | 9       | 0      | 0  | 4       | 0      | 5       | 4               | 1      | 4      | 1  | 1      | 0      | 0      | 9                   | 3        | 5  | 0      | 0  | 0  | 1      | AST        |
| NOA       | 1   | 0      | 4           | 0  | 1      | 2      | 1      | 2       | 2      | 0  | 5      | 22      | 1      | 0  | 30      | 0      | 23      | 16              | 0      | 6      | 2  | 3      | 1      | 0      | 34                  | 0        | 0  | 0      | 0  | 0  | 0      | NOA        |
| FXC       | 1   | 1      | 4           | 2  | 1      | 4      | 1      | 9       | 3      | 0  | 7      | 41      | 2      | 1  | 11      | 2      | 19      | 28              | 1      | 3      | 1  | 3      | 2      | 0      | 23                  | 2        | 5  | 1      | 0  | 1  | 1      | EXC        |
| ΕU        | 1   | 0      | 12          | 0  | 1      | 13     | 2      | 9       | 8      | 0  | 17     | 110     | 5      | _1 | 38      | 2      | 57      | 76              | 0      | 7      | 4  | 7      | 4      | 0      | 72                  | 0        | 0  | 2      | 1  | 1  | 1      | ΕU         |
|           | AL  | AM     | AT          | ΑZ | ΒA     | ΒE     | ΒG     | ΒY      | СН     | CY | CZ     | DE      | DK     | EΕ | ES      | F١     | FR      | GΒ              | GE     | GR     | HR | ΗU     | IΕ     | IS     | IT                  | KG       | ΚZ | LT     | LU | LV | MD     |            |

Table C.5 Cont.: 2016 country-to-country blame matrices for  $AOT40_f^{uc}$ . Units: ppb.h per 15% emis. red. of VOC. Emitters  $\rightarrow$ , Receptors  $\downarrow$ .

|          | ME | MK | MT  | NL  | NO | PL       | PΤ     | RO      | RS       | RU  | SE     | SI     | SK | ТJ | ТΜ | TR     | UA      | UZ  | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC       | DMS | VOL | EXC        | EU        |          |
|----------|----|----|-----|-----|----|----------|--------|---------|----------|-----|--------|--------|----|----|----|--------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----------|-----|-----|------------|-----------|----------|
| AL       | 9  | 10 | 0   | 9   | 3  | 50       | 4      | 15      | 42       | 42  | 3      | 3      | 7  | 0  | 0  | 14     | 19      | 0   | 0   | 0   | 0   | 1   | 0   | 2   | 31  | 106       | 0   | 0   | 740        | 477       | AL       |
| AM       | 0  | 0  | 0   | 2   | 2  | 13       | 1      | 6       | 3        | 77  | 2      | 0      | 1  | 0  | 1  | 29     | 20      | 1   | 0   | 0   | 0   | 0   | 0   | 304 | 10  | 82        | 0   | 0   | 433        | 103       | AM       |
| AT       | 0  | 0  | 0   | 26  | 4  | 53       | 2      | 7       | 5        | 29  | 4      | 14     | 11 | 0  | 0  | 2      | 10      | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 7   | 77        | 0   | 0   | 1025       | 918       | AT       |
| AZ       | 0  | 0  | 0   | 3   | 3  | 16       | 1      | 6       | 3        | 138 | 2      | 0      | 1  | 0  | 2  | 21     | 31      | 1   | 0   | 0   | 0   | 0   | 0   | 226 | 7   | 116       | 0   | 0   | 460        | 114       | AZ       |
| BA       | 2  | 1  | 0   | 15  | 3  | 60       | 3      | 15      | 39       | 35  | 3      | 3      | 10 | 0  | 0  | 5      | 16      | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 18  | 83        | 0   | 0   | 654        | 513       | BA       |
| BE       | 0  | 0  | 0   | 90  | 6  | 31       | 2      | 2       | 1        | 31  | 4      | 1      | 2  | 0  | 0  | 1      | 6       | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2   | 73        | 0   | 0   | 905        | 839       | BE       |
| BG       | 1  | 4  | 0   | 9   | 4  | 63       | 2      | 34      | 27       | 89  | 4      | 1      | 7  | 0  | 0  | 50     | 51      | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 12  | 105       | 0   | 0   | 671        | 409       | BG       |
| ΒY       | 0  | 0  | 0   | 12  | 4  | 60       | 0      | 4       | 1        | 109 | 5      | 0      | 2  | 0  | 0  | 2      | 17      | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 1   | 60        | 0   | 0   | 463        | 269       | ΒY       |
| СН       | 0  | 0  | 0   | 21  | 4  | 27       | 3      | 2       | 2        | 25  | 4      | 3      | 2  | 0  | 0  | 1      | 5       | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 7   | 63        | 0   | 0   | 1074       | 780       | СН       |
| CY       | 1  | 3  | 0   | 7   | 3  | 34       | 3      | 23      | 13       | 99  | 3      | 2      | 5  | 0  | 0  | 319    | 45      | 0   | 0   | 0   | 0   | 1   | 0   | 57  | 37  | 191       | 0   | 0   | 927        | 405       | CY       |
| C7       | 0  | 0  | 0   | 32  | 6  | 107      | 1      | 8       | 5        | 35  | 5      | 3      | 11 | 0  | 0  | 2      | 14      | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2   | 80        | 0   | 0   | 888        | 798       | C7       |
| DF       | 0  | 0  | 0   | 60  | 7  | 55       | 1      | 3       | 2        | 32  | 6      | 1      | 4  | 0  | 0  | - 1    | 7       | 0   | 0   | 0   | 0   | 0   | - 1 | 1   | 2   | 76        | 0   | 0   | 955        | 875       | DE       |
| DK       | 0  | 0  | 0   | 50  | 13 | 40       | 0      | 1       | 0        | 52  | 22     | 0      | 1  | 0  | 0  | 0      | 4       | 0   | 0   | 1   | 0   | 0   | - 1 | 1   | 0   | 65        | 0   | 0   | 604        | 521       | DK       |
| FF       | 0  | 0  | 0   | 16  | 4  | 45       | 0      | 1       | 0        | 64  | 9      | 0      | 1  | 0  | 0  | 1      | 4       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 49        | 0   | 0   | 346        | 262       | FF       |
| FS       | 0  | 0  | 0   | 5   | 2  | 10       | 28     | 1       | 1        | 11  | 2      | 1      | 1  | 0  | 0  | 1      | 2       | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 28  | 54        | 0   | 0   | 435        | 411       | FS       |
| FI       | 0  | 0  | 0   | 8   | 2  | 17       | 0      | 0       | 0        | 31  | 6      | 0      | 0  | 0  | 0  | 0      | 2       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 21        | 0   | 0   | 160        | 127       | FI       |
| FR       | 0  | 0  | 0   | 28  | 5  | 27       | 4      | 2       | 1        | 28  | 4      | 2      | 2  | 0  | 0  | 1      | 6       | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 7   | 62        | 0   | 0   | 631        | 566       | FR       |
| GR       | 0  | 0  | 0   | 20  | 8  | 15       | 0      | 1       | 0        | 20  | 5      | 0      | 1  | 0  | 0  | 1      | 1       | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   | /1        | 0   | 0   | 168        | 123       | GR       |
| GE       | 0  | 1  | 0   | 23  | 3  | 19       | 1      | 0       | 1        | 105 | 2      | 1      | 1  | 0  | 1  | 28     | 7<br>21 | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 0   | 97        | 0   | 0   | 400        | 126       | CE       |
|          | 0  | 0  | 0   | 0   | 0  | 10       | 0      | 9       | 4        | 105 | 2      | 1      | 0  | 0  | 1  | 20     | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 100 | 9   | 2         | 0   | 0   | 417        | 120       | GL       |
|          | 2  | 7  | 0   | 10  | 1  | 0<br>د 0 | 2      | 26      | 0<br>26  | 05  | 4      | 0<br>2 | 7  | 0  | 0  | 67     | 12      | 0   | -0  | 0   | 0   | 1   | 0   | 5   | 26  | -J<br>122 | 0   | 0   | 0<br>060   | 0<br>596  |          |
|          | 2  | 1  | 0   | 10  | 4  | 50<br>70 | 2      | 20      | 20       | 26  | 4      | 10     | 12 | 0  | 0  | 07     | 45      | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 20  | 133       | 0   | 0   | 002        | 720       |          |
|          | 1  | 1  | 0   | 19  | 4  | 100      | ა<br>ე | 20      | 30<br>32 | 30  | ა<br>ა | 10     | 12 | 0  | 0  | 4      | 12      | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 15  | 97        | 0   | 0   | 042<br>700 | 120       |          |
|          | 1  | 1  | 0   | 10  | 5  | 100      | 2      | 3U<br>1 | 23       | 47  |        | 0      | 1  | 0  | 0  | 4      | 23<br>E | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 20        | 0   | 0   | 109        | 246       |          |
| IE       | 0  | 0  | 0   | 14  | 0  | 17       | 1      | 1       | 0        | 22  | 4      | 0      | 1  | 0  | 0  | 0      | 5       | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 30        | 0   | 0   | 287        | 240       | IE       |
| 15       | 1  | 1  | 0   | 10  | 2  | 2        | 1      | 0       | 10       | 2   | 1      | 17     | 0  | 0  | 0  | 0      | 11      | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 25  | -4        | 0   | 0   | 35         | 30        | 15       |
|          | 1  | 1  | 0   | 10  | 4  | 45       | 5      | ð       | 10       | 31  | 3      | 1/     | 1  | 0  | 0  | 4      | 11      | 124 | 0   | 0   | 0   | 2   | 0   | 1   | 35  | 118       | 0   | 0   | 1308       | 1209      |          |
| KG<br>KZ | 0  | 0  | 0   | 1   | 1  | 0        | 1      | 2       | 1        | 47  | 1      | 0      | 1  | 0  | 4  | ð<br>4 | 0<br>11 | 134 | 0   | 0   | 0   | 0   | 0   | 230 | 5   | 75        | 0   | 0   | 382        | 55<br>75  | NG<br>V7 |
| KZ       | 0  | 0  | 0   | 2   | 2  | 11       | 0      | 2       | 1        | 107 | 2      | 0      | 1  | 0  | 1  | 4      | 11      | 0   | 0   | 0   | 0   | 0   | 0   | 35  | 2   | 74        | 0   | 0   | 244        | /5<br>245 | KZ       |
|          | 0  | 0  | 0   | 23  | 5  | 00       | 0      | 2       | 1        | 15  | 0      | 0      | 2  | 0  | 0  | 1      | 8       | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 50        | 0   | 0   | 460        | 345       |          |
|          | 0  | 0  | 0   | 3/  | 5  | 35       | 2      | 2       | 1        | 27  | 3      | 1      | 2  | 0  | 0  | 1      |         | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 2   | 70        | 0   | 0   | 844        | 183       | LU       |
|          | 0  | 0  | 0   | 18  | 4  | 47       | 0      | 2       | 1        | 02  | (      | 0      | 2  | 0  | 0  | 1      | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 52        | 0   | 0   | 3/5        | 280       | LV       |
| MD       | 0  | 0  | 0   | 11  | 4  | 67       | 1      | 26      | 6        | 100 | 4      | 1      | 4  | 0  | 0  | 18     | 68      | 0   | 0   | 0   | 0   | 0   | 0   | 4   | 4   | 86        | 0   | 0   | 545        | 305       | MD       |
| ME       | 33 | 2  | 0   | 11  | 3  | 50       | 3      | 14      | 34       | 39  | 2      | 2      | 1  | 0  | 0  | 10     | 18      | 0   | 0   | 0   | 0   | 1   | 0   | 2   | 26  | 89        | 0   | 0   | 625        | 444       | ME       |
| MK       | 1  | 58 | 0   | 9   | 3  | 55       | 3      | 20      | 44       | 52  | 3      | 2      | (  | 0  | 0  | 27     | 24      | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 21  | 93        | 0   | 0   | 667        | 423       | MK       |
| MI       | 1  | 1  | 144 | 15  | 3  | 47       | 9      | 14      | 12       | 31  | 3      | 4      | 6  | 0  | 0  | 11     | 15      | 0   | 0   | 0   | 0   | 6   | 0   | 1   | 84  | 163       | 0   | 0   | 997        | 893       | MI       |
| NL       | 0  | 0  | 0   | 207 | 9  | 34       | 1      | 2       | 1        | 35  | 6      | 0      | 3  | 0  | 0  | 1      | 6       | 0   | 0   | 0   | 0   | 0   | 2   | 1   | 1   | /3        | 0   | 0   | 953        | 886       | NL       |
| NO       | 0  | 0  | 0   | 8   | 14 | 8        | 0      | 0       | 0        | 16  | 4      | 0      | 0  | 0  | 0  | 0      | 1       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 6         | 0   | 0   | 138        | 103       | NO       |
| PL       | 0  | 0  | 0   | 26  | 6  | 188      | 1      | 6       | 3        | 62  | 6      | 1      | 6  | 0  | 0  | 1      | 18      | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 79        | 0   | 0   | /1/        | 600       | PL       |
| PT       | 0  | 0  | 0   | 3   | 2  | 6        | 161    | 1       | 1        | 11  | 1      | 0      | 1  | 0  | 0  | 1      | 2       | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 15  | 48        | 0   | 0   | 397        | 377       | PT       |
| RO       | 1  | 2  | 0   | 11  | 4  | 69       | 1      | 71      | 19       | 78  | 4      | 1      | 6  | 0  | 0  | 20     | 45      | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 8   | 88        | 0   | 0   | 596        | 396       | RO       |
| RS       | 2  | 7  | 0   | 13  | 3  | 76       | 2      | 31      | 112      | 49  | 3      | 2      | 12 | 0  | 0  | 11     | 24      | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 14  | 89        | 0   | 0   | 718        | 476       | RS       |
| RU       | 0  | 0  | 0   | 3   | 2  | 10       | 0      | 1       | 1        | 95  | 2      | 0      | 0  | 0  | 0  | 2      | 10      | 0   | 0   | 0   | 0   | 0   | 0   | 4   | 1   | 34        | 0   | 0   | 184        | 63        | RU       |
| SE       | 0  | 0  | 0   | 12  | 4  | 16       | 0      | 0       | 0        | 26  | 9      | 0      | 0  | 0  | 0  | 0      | 2       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 17        | 0   | 0   | 196        | 158       | SE       |
| SI       | 0  | 0  | 0   | 23  | 4  | 65       | 3      | 11      | 11       | 33  | 4      | 86     | 11 | 0  | 0  | 2      | 12      | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 13  | 97        | 0   | 0   | 1080       | 986       | SI       |
| SK       | 0  | 0  | 0   | 18  | 5  | 143      | 1      | 18      | 10       | 45  | 4      | 3      | 35 | 0  | 0  | 3      | 20      | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 5   | 77        | 0   | 0   | 736        | 627       | SK       |
| ΤJ       | 0  | 0  | 0   | 1   | 1  | 5        | 1      | 2       | 1        | 41  | 1      | 0      | 1  | 13 | 7  | 7      | 6       | 51  | 0   | 0   | 0   | 0   | 0   | 244 | 4   | 64        | 0   | 0   | 201        | 45        | ΤJ       |
| ТМ       | 0  | 0  | 0   | 2   | 2  | 12       | 1      | 4       | 2        | 95  | 2      | 0      | 1  | 1  | 11 | 12     | 15      | 8   | 0   | 0   | 0   | 0   | 0   | 246 | 6   | 115       | 0   | 0   | 268        | 90        | ТМ       |
| TR       | 0  | 1  | 0   | 5   | 3  | 24       | 2      | 13      | 7        | 89  | 2      | 1      | 3  | 0  | 0  | 174    | 33      | 0   | 0   | 0   | 0   | 0   | 0   | 114 | 18  | 97        | 0   | 0   | 547        | 208       | TR       |
| UA       | 0  | 0  | 0   | 9   | 4  | 56       | 1      | 12      | 4        | 136 | 4      | 1      | 3  | 0  | 0  | 12     | 98      | 0   | 0   | 0   | 0   | 0   | 0   | 6   | 4   | 85        | 0   | 0   | 545        | 257       | UA       |
| UZ       | 0  | 0  | 0   | 2   | 2  | 11       | 1      | 3       | 2        | 93  | 2      | 0      | 1  | 3  | 5  | 9      | 12      | 72  | 0   | 0   | 0   | 0   | 0   | 139 | 5   | 107       | 0   | 0   | 324        | 83        | UZ       |
| ATL      | 0  | 0  | 0   | 0   | 0  | 0        | 0      | 0       | 0        | 0   | 0      | 0      | 0  | 0  | 0  | 0      | 0       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1         | 0   | 0   | 6          | 5         | ATL      |
| BAS      | 0  | 0  | 0   | 12  | 3  | 21       | 0      | 0       | 0        | 26  | 10     | 0      | 0  | 0  | 0  | 0      | 1       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 22        | 0   | 0   | 188        | 153       | BAS      |
| BLS      | 0  | 0  | 0   | 1   | 1  | 8        | 0      | 4       | 1        | 36  | 1      | 0      | 1  | 0  | 0  | 16     | 18      | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 1   | 22        | 0   | 0   | 129        | 47        | BLS      |
| MED      | 0  | 0  | 0   | 3   | 1  | 9        | 1      | 4       | 3        | 14  | 1      | 1      | 1  | 0  | 0  | 26     | 7       | 0   | 0   | 0   | 0   | 1   | 0   | 6   | 16  | 30        | 0   | 0   | 201        | 142       | MED      |
| NOS      | 0  | 0  | 0   | 7   | 5  | 3        | 0      | 0       | 0        | 4   | 1      | 0      | 0  | 0  | 0  | 0      | 1       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 7         | 0   | 0   | 79         | 68        | NOS      |
| AST      | 0  | 0  | 0   | 1   | 1  | 6        | 1      | 3       | 2        | 39  | 1      | 0      | 1  | 0  | 3  | 24     | 9       | 5   | 0   | 0   | 0   | 0   | 0   | 773 | 6   | 97        | 0   | 0   | 163        | 59        | AST      |
| NOA      | 0  | 0  | 0   | 4   | 1  | 10       | 10     | 3       | 3        | 10  | 1      | 1      | 1  | 0  | 0  | 9      | 4       | 0   | 0   | 0   | 0   | 1   | 0   | 6   | 130 | 63        | 0   | 0   | 219        | 183       | NOA      |
| EXC      | 0  | 0  | 0   | 8   | 3  | 22       | 2      | 5       | 3        | 79  | 3      | 1      | 2  | 0  | 1  | 12     | 14      | 5   | 0   | 0   | 0   | 0   | 0   | 28  | 4   | 56        | 0   | 0   | 339        | 198       | EXC      |
| EU       | 0  | 1  | 0   | 22  | 5  | 48       | 8      | 9       | 5        | 37  | 5      | 3      | 4  | 0  | 0  | 6      | 11      | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 9   | 64        | 0   | 0   | 616        | 530       | EU       |
|          | ME | MK | ΜТ  | NL  | NO | PL       | ΡТ     | RO      | RS       | RU  | SE     | SI     | SK | ТJ | ТМ | TR     | UA      | UZ  | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC       | DMS | VOL | EXC        | ΕU        |          |

Table C.6: 2016 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of  $NO_x$ . **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|            | AL     | AM   | AT       | ΑZ     | ΒA     | ΒE       | ΒG     | ΒY     | СН | CY     | CZ      | DE       | DK     | EE | ES        | FI     | FR      | GΒ     | GE     | GR      | HR | ΗU     | IE     | IS     | IT      | KG     | ΚZ       | LT  | LU  | LV | MD     |     |
|------------|--------|------|----------|--------|--------|----------|--------|--------|----|--------|---------|----------|--------|----|-----------|--------|---------|--------|--------|---------|----|--------|--------|--------|---------|--------|----------|-----|-----|----|--------|-----|
| AL         | 68     | 0    | 3        | 0      | 5      | 0        | 7      | 1      | 1  | 0      | 2       | 4        | 0      | 0  | 9         | 0      | 8       | 1      | 0      | 26      | 4  | 5      | 0      | 0      | 29      | 0      | 0        | 0   | 0   | 0  | 0      | AL  |
| AM         | 0      | 43   | 0        | 37     | 0      | 0        | 1      | 1      | 0  | 0      | 0       | 1        | 0      | 0  | 2         | 0      | 1       | 0      | 14     | 2       | 0  | 0      | 0      | 0      | 2       | 0      | 3        | 0   | 0   | 0  | 0      | AM  |
| AT         | 0      | 0    | 41       | 0      | 1      | 0        | 1      | 1      | 6  | 0      | 11      | 40       | 0      | 0  | 5         | 0      | 20      | 3      | 0      | 1       | 3  | 6      | 1      | 0      | 22      | 0      | 0        | 0   | 0   | 0  | 0      | AT  |
| AZ         | 0      | 6    | 0        | 74     | 0      | 0        | 1      | 1      | 0  | 0      | 0       | 1        | 0      | 0  | 1         | 0      | 1       | 0      | 15     | 1       | 0  | 0      | 0      | 0      | 2       | 0      | 8        | 0   | 0   | 0  | 0      | AZ  |
| BA         | 2      | 0    | 9        | 0      | 43     | 0        | 4      | 1      | 1  | 0      | 7       | 11       | 0      | 0  | 8         | 0      | 9       | 2      | 0      | 3       | 19 | 17     | 0      | 0      | 27      | 0      | 0        | 0   | 0   | 0  | 0      | BA  |
| BE         | 0      | 0    | 1        | 0      | 0      | -70      | 0      | 1      | 1  | 0      | 1       | -2       | 0      | 0  | 4         | 0      | 27      | 2      | 0      | 0       | 0  | 1      | 2      | 0      | 2       | 0      | 0        | 0   | 1   | 0  | 0      | BE  |
| BG         | 2      | 0    | 2        | 0      | 2      | 0        | 56     | 3      | 0  | 0      | 2       | 4        | 0      | 0  | 4         | 1      | 3       | 1      | 0      | 16      | 2  | 6      | 0      | 0      | 8       | 0      | 1        | 1   | 0   | 0  | 3      | BG  |
| BY         | 0      | 0    | 1        | 0      | 0      | 0        | 0      | 31     | 0  | 0      | 2       | 7        | 2      | 1  | 1         | 3      | 3       | 3      | 0      | 1       | 0  | 1      | 1      | 0      | 1       | 0      | 1        | 6   | 0   | 3  | 1      | BY  |
| СН         | 0      | 0    | 5        | 0      | 0      | 1        | 0      | 0      | 41 | 0      | 1       | 11       | 0      | 0  | 7         | 0      | 55      | 3      | 0      | 0       | 1  | 1      | 1      | 0      | 37      | 0      | 0        | 0   | 0   | 0  | 0      | СН  |
| CY         | 1      | 0    | 1        | 0      | 1      | 0        | 3      | 1      | 0  | 45     | 0       | 1        | 0      | 0  | 5         | 0      | 4       | 0      | 0      | 22      | 1  | 1      | 0      | 0      | 8       | 0      | 0        | 0   | 0   | 0  | 1      | CY  |
| C7         | 0      | 0    | 10       | 0      | 1      | 0        | 1      | 2      | 1  |        | 30      | 36       | 1      | 0  | 3         | 1      | 15      | 1      | 0      |         | 2  | 6      | 1      | 0      | 5       | 0      | 0        | 1   | 0   | 0  | 0      | C7  |
|            | 0      | 0    | 2010     | 0      |        | -0<br>-0 | 0      | 1      | 2  | 0      | J2<br>۸ | 0        | 1      | 0  | 2         | 1      | 10      | т<br>Б | 0      | 0       | 2  | 1      | 2      | 0      | 2       | 0      | 0        | 1   | 1   | 0  | 0      |     |
|            | 0      | 0    | 0        | 0      | 0      | -2       | 0      | 1      | 2  | 0      | 1       | 2        | 12     | 1  | 1         | 1<br>2 | ~~~     | 0      | 0      | 0       | 0  | 1      | 2      | 0      | 0       | 0      | 0        | 1   | 1   | 1  | 0      |     |
|            | 0      | 0    | 0        | 0      | 0      | -2       | 0      | 2      | 0  | 0      | 1       | 5        | -12    | 1  | 1         | 10     | 4       | 0      | 0      | 0       | 0  | 0      | 1      | 0      | 0       | 0      | 0        | 1   | 0   | 1  | 0      | EE  |
|            | 0      | 0    | 1        | 0      | 0      | 0        | 0      | о<br>О | 0  | 0      | 1       | 1        | о<br>О | 1  | 1<br>11 F | 10     | 14      | 4      | 0      | 0       | 0  | 0      | 1      | 0      | 0       | 0      | 0        | 4   | 0   | 0  | 0      |     |
| E3         | 0      | 0    | 1        | 0      | 0      | 0        | 0      | 0      | 0  | 0      | 0       | 1        | 0      | 0  | 115       | 10     | 14      | 2      | 0      | 0       | 0  | 0      | 1      | 0      | 3       | 0      | 0        | 1   | 0   | 1  | 0      | ES  |
| FI         | 0      | 0    | 0        | 0      | 0      | -0       | 0      | 2      | 0  | 0      | 0       | 3        | 2      | 2  | 0         | 18     | 1       | 3      | 0      | 0       | 0  | 0      | 1      | 0      | 0       | 0      | 0        | T   | 0   | 1  | 0      | FI  |
| FR         | 0      | 0    | 1        | 0      | 0      | -1       | 0      | 0      | 2  | 0      | 1       | 3        | 0      | 0  | 15        | 0      | 73      | 4      | 0      | 0       | 0  | 1      | 2      | 0      | 8       | 0      | 0        | 0   | 0   | 0  | 0      | FR  |
| GB         | 0      | 0    | 0        | 0      | 0      | -1       | 0      | 0      | 0  | 0      | 0       | -0       | 1      | 0  | 2         | 1      | 6       | -35    | 0      | 0       | 0  | 0      | 5      | 0      | 1       | 0      | 0        | 0   | 0   | 0  | 0      | GB  |
| GE         | 0      | 5    | 0        | 24     | 0      | 0        | 2      | 1      | 0  | 0      | 0       | 1        | 0      | 0  | 2         | 0      | 2       | 0      | 59     | 2       | 0  | 1      | 0      | 0      | 3       | 0      | 3        | 0   | 0   | 0  | 1      | GE  |
| GL         | 0      | 0    | 0        | 0      | 0      | 0        | 0      | 0      | 0  | 0      | 0       | 0        | 0      | 0  | 0         | 0      | 0       | 0      | 0      | 0       | 0  | 0      | 0      | 0      | 0       | 0      | 0        | 0   | 0   | 0  | 0      | GL  |
| GR         | 5      | 0    | 2        | 0      | 2      | 0        | 25     | 2      | 0  | 0      | 1       | 3        | 0      | 0  | 7         | 0      | 6       | 1      | 0      | 80      | 2  | 3      | 0      | 0      | 18      | 0      | 1        | 0   | 0   | 0  | 1      | GR  |
| HR         | 1      | 0    | 16       | 0      | 12     | 0        | 2      | 1      | 1  | 0      | 9       | 15       | 0      | 0  | 8         | 0      | 11      | 2      | 0      | 2       | 38 | 23     | 1      | 0      | 30      | 0      | 0        | 0   | 0   | 0  | 0      | HR  |
| HU         | 0      | 0    | 12       | 0      | 3      | 0        | 2      | 3      | 1  | 0      | 11      | 15       | 1      | 0  | 4         | 1      | 8       | 2      | 0      | 1       | 7  | 49     | 1      | 0      | 10      | 0      | 0        | 1   | 0   | 0  | 1      | ΗU  |
| IE         | 0      | 0    | 0        | 0      | 0      | -1       | 0      | 0      | 0  | 0      | 0       | -0       | 0      | 0  | 1         | 0      | 3       | 5      | 0      | 0       | 0  | 0      | -4     | 0      | 1       | 0      | 0        | 0   | -0  | 0  | 0      | IE  |
| IS         | 0      | 0    | 0        | 0      | 0      | -0       | 0      | 0      | 0  | 0      | 0       | -0       | 0      | 0  | 1         | 0      | 1       | 1      | 0      | 0       | 0  | 0      | 1      | 6      | 0       | 0      | 0        | 0   | 0   | 0  | 0      | IS  |
| IT         | 1      | 0    | 8        | 0      | 2      | 0        | 1      | 0      | 3  | 0      | 3       | 9        | 0      | 0  | 14        | 0      | 26      | 2      | 0      | 2       | 6  | 4      | 1      | 0      | 83      | 0      | 0        | 0   | 0   | 0  | 0      | IT  |
| KG         | 0      | 0    | 0        | 1      | 0      | 0        | 0      | 0      | 0  | 0      | 0       | 0        | 0      | 0  | 2         | 0      | 1       | 0      | 1      | 1       | 0  | 0      | 0      | 0      | 1       | 55     | 20       | 0   | 0   | 0  | 0      | KG  |
| ΚZ         | 0      | 0    | 0        | 1      | 0      | 0        | 0      | 1      | 0  | 0      | 0       | 1        | 0      | 0  | 1         | 1      | 1       | 1      | 0      | 0       | 0  | 0      | 0      | 0      | 1       | 2      | 36       | 0   | 0   | 0  | 0      | ΚZ  |
| IT         | 0      | 0    | 1        | 0      | 0      | 0        | 0      | 10     | 0  | 0      | 2       | 9        | 3      | 2  | 1         | 4      | 3       | 5      | 0      | 0       | 0  | 1      | 1      | 0      | 1       | 0      | 0        | 16  | 0   | 5  | 0      | IT  |
| 1.0        | 0      | 0    | 2        | 0      | 0      | -2       | 0      | 1      | 1  | 0      | 1       | 19       | 0      | 0  | 5         | 0      | 40      | 5      | 0      | 0       | 0  | 1      | 2      | 0      | 3       | 0      | 0        | 0   | -57 | 0  | 0      | 10  |
|            | 0      | 0    | 0        | 0      | 0      | 0        | 0      | 7      | 0  | 0      | 1       | 7        | 3      | 3  | 1         | 5      | 2       | 1      | 0      | 0       | 0  | 1      | 1      | 0      | 1       | 0      | 0        | 10  | 0   | 8  | 0      | 11/ |
|            | 0      | 0    | 1        | 0      | 1      | 0        | 3      | 7      | 0  | 0      | 2       | 5        | 1      | 0  | 2         | 2      | 2       | 1      | 0      | 2       | 1  | 3      | 0      | 0      | 1       | 0      | 1        | 10  | 0   | 1  | 10     |     |
| ME         | 12     | 0    | 1        | 0      | 1/     | 0        | 6      | 1      | 1  | 0      | 4       | 7        | 0      | 0  | 0         | 0      | 2       | 1      | 0      | 7       | 6  | 2      | 0      | 0      | 7<br>20 | 0      | 0        | 0   | 0   | 0  | 19     | ME  |
|            | 17     | 0    | +<br>2   | 0      | 2      | 0        | 17     | 1      | 0  | 0      | 4       | 1        | 0      | 0  | 9         | 0      | 6       | 1      | 0      | /<br>/1 | 2  | 6      | 0      | 0      | 16      | 0      | 0        | 0   | 0   | 0  | 1      |     |
|            | 1      | 0    | 2        | 0      | ່<br>ງ | 0        | 11     | 1      | 1  | 0      | 2       | 4        | 0      | 0  | 7<br>01   | 0      | 0<br>22 | 1      | 0      | 41      | 2  | 0      | 0      | 0      | 10      | 0      | 0        | 0   | 0   | 0  | 1      |     |
|            | 1      | 0    | 1        | 0      | 2      | 12       | 2      | 1      | 1  | 0      | 2       | 4        | 1      | 0  | 21        | 0      | 23      | 2      | 0      | 0       | 3  | 2      | 2      | 0      | 44      | 0      | 0        | 1   | 0   | 0  | 0      |     |
| INL NO     | 0      | 0    | 1        | 0      | 0      | -13      | 0      | 1      | 0  | 0      | 1       | -9       | 1      | 0  | 3         | 0      | ð       | 2      | 0      | 0       | 0  | 0      | 3      | 0      | T       | 0      | 0        | T   | 0   | 0  | 0      | NL  |
| NO         | 0      | 0    | 0        | 0      | 0      | -0       | 0      | 1      | 0  | 0      | 0       | 1        | 1      | 0  | 1         | 3      | 2       | 4      | 0      | 0       | 0  | 0      | 1      | 0      | 0       | 0      | 0        | 0   | 0   | 0  | 0      | NO  |
| PL         | 0      | 0    | 2        | 0      | 0      | -0       | 0      | 6      | 0  | 0      | 6       | 19       | 2      | 1  | 1         | 2      | (       | 4      | 0      | 0       | 1  | 3      | 1      | 0      | 2       | 0      | 0        | 3   | 0   | 1  | 0      | PL  |
| PT         | 0      | 0    | 0        | 0      | 0      | -0       | 0      | 0      | 0  | 0      | 0       | 0        | 0      | 0  | 69        | 0      | 6       | 1      | 0      | 0       | 0  | 0      | 1      | 0      | 1       | 0      | 0        | 0   | 0   | 0  | 0      | PT  |
| RO         | 1      | 0    | 2        | 0      | 2      | 0        | 9      | 4      | 0  | 0      | 3       | 6        | 1      | 0  | 3         | 1      | 4       | 1      | 0      | 3       | 2  | 10     | 0      | 0      | 7       | 0      | 1        | 1   | 0   | 0  | 5      | RO  |
| RS         | 5      | 0    | 4        | 0      | 8      | 0        | 11     | 2      | 0  | 0      | 5       | 8        | 0      | 0  | 6         | 1      | 6       | 1      | 0      | 5       | 5  | 17     | 0      | 0      | 14      | 0      | 0        | 0   | 0   | 0  | 1      | RS  |
| RU         | 0      | 0    | 0        | 1      | 0      | 0        | 0      | 2      | 0  | 0      | 0       | 1        | 0      | 1  | 1         | 2      | 1       | 1      | 0      | 0       | 0  | 0      | 0      | 0      | 1       | 0      | 6        | 1   | 0   | 0  | 0      | RU  |
| SE         | 0      | 0    | 0        | 0      | 0      | -0       | 0      | 1      | 0  | 0      | 1       | 3        | 3      | 1  | 1         | 5      | 2       | 5      | 0      | 0       | 0  | 0      | 1      | 0      | 0       | 0      | 0        | 1   | 0   | 1  | 0      | SE  |
| SI         | 0      | 0    | 34       | 0      | 2      | -0       | 1      | 1      | 1  | 0      | 8       | 19       | 0      | 0  | 7         | 0      | 13      | 2      | 0      | 1       | 23 | 12     | 1      | 0      | 31      | 0      | 0        | 0   | 0   | 0  | 0      | SI  |
| SK         | 0      | 0    | 8        | 0      | 1      | 0        | 1      | 3      | 1  | 0      | 16      | 17       | 1      | 0  | 3         | 1      | 8       | 2      | 0      | 1       | 3  | 24     | 1      | 0      | 8       | 0      | 0        | 1   | 0   | 0  | 1      | SK  |
| ТJ         | 0      | 0    | 0        | 1      | 0      | 0        | 0      | 0      | 0  | 0      | 0       | 0        | 0      | 0  | 2         | 0      | 1       | 0      | 0      | 0       | 0  | 0      | 0      | 0      | 1       | 3      | 6        | 0   | 0   | 0  | 0      | ТJ  |
| ТМ         | 0      | 1    | 0        | 5      | 0      | 0        | 1      | 1      | 0  | 0      | 0       | 1        | 0      | 0  | 2         | 1      | 1       | 0      | 2      | 1       | 0  | 0      | 0      | 0      | 2       | 0      | 18       | 0   | 0   | 0  | 0      | ТМ  |
| TR         | 1      | 2    | 1        | 2      | 0      | 0        | 3      | 1      | 0  | 1      | 1       | 1        | 0      | 0  | 4         | 0      | 3       | 0      | 2      | 7       | 0  | 1      | 0      | 0      | 5       | 0      | 1        | 0   | 0   | 0  | 1      | TR  |
| UA         | 0      | 0    | 1        | 0      | 0      | 0        | 2      | 10     | 0  | 0      | 2       | 4        | 1      | 1  | 2         | 2      | 2       | 1      | 0      | 1       | 1  | 2      | 0      | 0      | 3       | 0      | 2        | 2   | 0   | 1  | 3      | UA  |
| UZ         | 0      | 1    | 0        | 2      | 0      | 0        | 0      | 1      | 0  | 0      | 0       | 1        | 0      | 0  | 2         | 1      | 1       | 0      | 1      | 1       | 0  | 0      | 0      | 0      | 2       | 2      | 24       | 0   | 0   | 0  | 0      | UZ  |
| ATL        | 0      | 0    | 0        | 0      | 0      | -0       | 0      | 0      | 0  | 0      | 0       | -0       | 0      | 0  | 4         | 1      | 3       | 2      | 0      | 0       | 0  | 0      | 1      | 1      | 0       | 0      | 0        | 0   | 0   | 0  | 0      | ATL |
| BAS        | 0      | 0    | 0        | 0      | 0      | -1       | 0      | 2      | 0  | 0      | 1       | 5        | 4      | 2  | 1         | 10     | 2       | 7      | 0      | 0       | 0  | 0      | 2      | 0      | 0       | 0      | 0        | 3   | 0   | 3  | 0      | BAS |
| BLS        | 0      | 0    | 1        | 2      | 1      | 0        | 7      | 5      | 0  | 0      | 1       | 2        | 0      | 0  | 2         | 1      | 2       | 1      | 7      | 5       | 0  | 2      | 0      | 0      | 4       | 0      | 2        | 1   | 0   | 1  | 3      | BLS |
| MED        | 2      | n    | <u>י</u> | ĥ      | 2      | n        | י<br>ה | 1      | 1  | 1      | 2       | <u>ہ</u> | ñ      | ñ  | 20        | n      | 26      | 2      | ∩      | 18      | 4  | -<br>२ | 1      | 0      | 37      | ñ      | 0        | Ô   | ñ   | n  | 1      | MED |
|            | ∠<br>∩ | 0    | ر<br>د   | 0      | ے<br>م | .2       | ر<br>۱ | 1      | 0  | ۰<br>۲ | ے<br>م  | -+<br>_1 | 0<br>D | 0  | 20<br>ว   | 1      | 20<br>1 | 2      | 0      | 10      | 4  | ر<br>۱ | т<br>Л | 1      | 1       | 0      | 0        | 0   | _0  | 0  | ۰<br>۲ | NOS |
| ACT        | 0      | 0    | 0        | 0<br>2 | 0      |          | 0      | л<br>Т | 0  | 0      | 0       | -4<br>0  | 4      | 0  | ∠<br>1    | о<br>Т | 4       | с<br>С | 1      | 1       | 0  | 0      | +<br>^ | U<br>T | 1       | 0<br>2 | 7        | 0   | -0  | 0  | 0      | VCT |
|            | 0      | 0    | 1        | 2      | 0      | 0        | 1      | 0      | 0  | 0      | 0       | 1        | 0      | 0  | 10        | 0      | 0       | 1      | U<br>T | ۲<br>۲  | 1  | 1      | 0      | 0      | о<br>Т  | 2      | <i>'</i> | 0   | 0   | 0  | 0      |     |
| NUA<br>EVC | U      | 0    | 1        | 1      | 0      | 0        | 1      | 0      | 0  | U      | U<br>1  | 1        | 0      | 0  | 10        | 0      | ŏ       | 1      | U<br>1 | 4       | 1  | 1      | 0      | 0      | 9       | U<br>1 | U        | 1   | U   | 0  | 0      | NUA |
|            | U      | 0    | 1        | Ţ      | 0      | -0       | 1      | 2      | 0  | 0      | 1       | 3<br>-   | 0      | 0  | 5         | 2      | 5       | 1      | Ţ      | 2       | 1  | 1      | U<br>1 | 0      | 4       | Ţ      | 9        | 1   | 0   | 1  | 0      |     |
| EU         | 0      | 0    | 3        | 0      | 1      | -1       | 3      | 2      | 1  | 0      | 3       | 1        | 1      | 0  | 19        | 2      | 18      | 1      | 0      | 3       | 2  | 3      | 1      | 0      | 10      | 0      | 0        | 1   | 0   | 1  | 0      | EU  |
|            | AL     | AIVI | AL       | AΖ     | BА     | ВF       | ВG     | ВY     | сH | LΥ     | LΖ      | DΕ       | υĸ     | ЕĿ | E۵        | н      | FК      | GВ     | ЧĿ     | GК      | нκ | ΗU     | IE.    | 15     | 11      | κG     | ĸ۷       | L I | LU  | LV | IVID   |     |

Table C.6 Cont.: 2016 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of NO<sub>x</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | ME | MK | МΤ  | NL   | NO | PL | ΡT | RO | RS | RU      | SE | SI | SK      | ТJ | ТΜ | TR | UA | UZ | ATL     | BAS | BLS | MED | NOS | AST | NOA | BIC      | DMS | VOL | EXC | EU  |     |
|-----|----|----|-----|------|----|----|----|----|----|---------|----|----|---------|----|----|----|----|----|---------|-----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|-----|
| AL  | 7  | 12 | 0   | 0    | 0  | 6  | 1  | 7  | 26 | 5       | 0  | 1  | 2       | 0  | 0  | 3  | 5  | 0  | 3       | 0   | 1   | 37  | 1   | 1   | 11  | 81       | 0   | 0   | 250 | 117 | AL  |
| AM  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | 2  | 1  | 17      | 0  | 0  | 0       | 0  | 1  | 34 | 6  | 0  | 1       | 0   | 4   | 5   | 0   | 83  | 4   | 76       | 0   | 0   | 174 | 16  | AM  |
| AT  | 0  | 0  | 0   | -0   | 1  | 8  | 1  | 3  | 1  | 3       | 1  | 6  | 3       | 0  | 0  | 0  | 2  | 0  | 4       | 1   | 0   | 6   | 1   | 0   | 3   | 60       | 0   | 0   | 191 | 174 | AT  |
| AZ  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | 2  | 1  | 42      | 0  | 0  | 0       | 0  | 3  | 13 | 8  | 1  | 1       | 0   | 3   | 3   | 0   | 54  | 2   | 68       | 0   | 0   | 186 | 14  | AZ  |
| BA  | 4  | 1  | 0   | 0    | 1  | 11 | 1  | 8  | 20 | 5       | 0  | 2  | 5       | 0  | 0  | 1  | 5  | 0  | 3       | 1   | 1   | 18  | 1   | 1   | 8   | 76       | 0   | 0   | 230 | 145 | BA  |
| BE  | 0  | 0  | 0   | -16  | 2  | 3  | 1  | 0  | 0  | 2       | 1  | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 7       | 1   | 0   | 1   | -12 | 0   | 1   | 52       | 0   | 0   | -32 | -39 | BE  |
| BG  | 1  | 3  | 0   | 0    | 1  | 10 | 0  | 32 | 15 | 19      | 1  | 0  | 2       | 0  | 0  | 5  | 21 | 0  | 2       | 1   | 7   | 10  | 1   | 1   | 5   | 71       | 0   | 0   | 228 | 151 | BG  |
| BY  | 0  | 0  | 0   | -0   | 3  | 23 | 0  | 2  | 1  | 36      | 4  | 0  | 1       | 0  | 0  | 1  | 9  | 0  | 3       | 6   | 0   | 1   | 3   | 1   | 1   | 55       | 0   | 0   | 149 | 66  | BY  |
| СН  | 0  | 0  | 0   | -0   | 0  | 2  | 1  | 1  | 1  | 2       | 0  | 1  | 0       | 0  | 0  | 0  | 1  | 0  | 5       | 0   | 0   | - 6 | 1   | 0   | 4   | 65       | 0   | 0   | 174 | 128 | СН  |
| CY  | 0  | 1  | 0   | 0    | 0  | 2  | 0  | 4  | 2  | - 8     | 0  | 0  | 0       | 0  | 0  | 76 | 6  | 0  | 1       | 0   | 4   | 74  | 0   | 10  | 8   | 96       | 0   | 0   | 199 | 100 | CY  |
| C7  | 0  | 0  | 0   | -1   | 1  | 20 | 0  | 3  | 1  | 5       | 1  | 1  | 6       | 0  | 0  | 0  | 3  | 0  | 4       | 1   | 0   | 2   | 2   | 0   | 1   | 58       | 0   | 0   | 164 | 149 | C7  |
| DE  | 0  | 0  | 0   | -5   | 2  | _0 | 0  | 1  | 0  | 3       | 2  | 0  | 1       | 0  | 0  | 0  | 1  | 0  | 6       | 1   | 0   | 1   | 0   | 0   | 1   | 56       | 0   | 0   | 72  | 61  | DE  |
| DK  | 0  | 0  | 0   | _4   | 6  | 6  | 0  | 0  | 0  | 7       | 6  | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 6       | 2   | 0   | 0   | 5   | 0   | 0   | 54       | 0   | 0   | 36  | 20  | DK  |
| FF  | 0  | 0  | 0   | -0   | 4  | 12 | 0  | 1  | 0  | 26      | 11 | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 4       | 18  | 0   | 1   | 4   | 0   | 0   | 53       | 0   | 0   | 106 | 70  | FF  |
| FS  | 0  | 0  | 0   | -0   | 0  | 1  | 18 | 0  | 0  | 1       | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 18      | 10  | 0   | 13  | 1   | 0   | 11  | 00       | 0   | 0   | 150 | 157 | FS  |
| FI  | 0  | 0  | 0   | -0   | 1  | 1  | 10 | 0  | 0  | 21      | 10 | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 10      | 0   | 0   | 15  | 3   | 0   | 0   | 10       | 0   | 0   | 76  | 137 | FI  |
| FR  | 0  | 0  | 0   | -0   | 1  | 2  | 2  | 0  | 0  | 21      | 10 | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 11      | 1   | 0   | 7   | 2   | 0   | 3   | 49<br>67 | 0   | 0   | 120 | 112 | FR  |
| CR  | 0  | 0  | 0   | -1   | 3  | 2  | 2  | 0  | 0  | 2       | 1  | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 0<br>11 | 1   | 0   | 0   | - 1 | 0   | 0   | 52       | 0   | 0   | 120 | 20  | CB  |
|     | 0  | 0  | 0   | -2   | 0  | 2  | 0  | 2  | 1  | 26      | 1  | 0  | 0       | 0  | 1  | 26 | 11 | 0  | 0       | 1   | 10  | 5   | -1  | 24  | 0   | 52<br>75 | 0   | 0   | 102 | -20 |     |
|     | 0  | 0  | 0   | 0    | 0  | 2  | 0  | 0  | 1  | 30<br>0 | 0  | 0  | 0       | 0  | 1  | 20 | 11 | 0  | 1       | 1   | 12  | 5   | 0   | 24  | 4   | 10       | 0   | 0   | 192 | 22  |     |
| GL  | 1  | 0  | 0   | 0    | 0  | 0  | 1  | 11 | 0  | 10      | 0  | 0  | 1       | 0  | 0  | 12 | 11 | 0  | 0       | 1   | 0   | 12  | 1   | 1   | 10  | 00       | 0   | 0   | 2   | 160 | GL  |
| GR  | 1  | 5  | 0   | 0    | 1  | 0  | 1  | 11 | 10 | 12      | 0  | 0  | 1       | 0  | 0  | 13 | 11 | 0  | 2       | 1   | 4   | 43  | 1   | 1   | 10  | 80       | 0   | 0   | 232 | 100 | GR  |
| пк  | 1  | 0  | 0   | 0    | 1  | 11 | 1  | 10 | 12 | 5       | 1  | 0  | 5<br>16 | 0  | 0  | 1  | 4  | 0  | 4       | 1   | 0   | 22  | 1   | 0   | 5   | 00       | 0   | 0   | 230 | 190 | пк  |
| HU  | 0  | 0  | 0   | -0   | 1  | 24 | 1  | 19 | 9  | ð       | 1  | 3  | 10      | 0  | 0  | 1  | 8  | 0  | 3       | 1   | 0   | 0   | 2   | 0   | 3   | 00       | 0   | 0   | 224 | 189 | HU  |
| IE  | 0  | 0  | 0   | -2   | 2  | 2  | 0  | 0  | 0  | 2       | 1  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 8<br>C  | 1   | 0   | 0   | 1   | 0   | 0   | 50       | 0   | 0   | 14  | 9   | IE  |
| 15  | 0  | 0  | 0   | -1   | 2  | 0  | 0  | 0  | 0  | 2       | 1  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 0       | 1   | 0   | 0   | 1   | 0   | 0   | 50       | 0   | 0   | 10  | 0   | 15  |
|     | 1  | 0  | 0   | 0    | 0  | 4  | 1  | 2  | 3  | 2       | 0  | 3  | 1       | 0  | 0  | 1  | 2  | 0  | 5       | 0   | 0   | 39  | 1   | 0   | 10  | 70       | 0   | 0   | 190 | 1/3 |     |
| KG  | 0  | 0  | 0   | 0    | 0  | 0  | 0  | 0  | 0  | 9       | 0  | 0  | 0       | 6  | 6  | 4  | 1  | 49 | 1       | 0   | 0   | 2   | 0   | /5  | 2   | 89       | 0   | 0   | 160 | 8   | KG  |
| KZ  | 0  | 0  | 0   | 0    | 1  | 1  | 0  | 1  | 0  | /1      | 1  | 0  | 0       | 0  | 2  | 2  | 4  | 3  | 1       | 1   | 1   | 1   | 0   | 15  | 1   | 97       | 0   | 0   | 137 | 12  | KZ  |
| LI  | 0  | 0  | 0   | 0    | 3  | 24 | 0  | 1  | 0  | 24      | 6  | 0  | 1       | 0  | 0  | 0  | 3  | 0  | 3       | 11  | 0   | 1   | 4   | 0   | 0   | 53       | 0   | 0   | 126 | 84  | L I |
| LU  | 0  | 0  | 0   | -4   | 1  | 4  | 1  | 1  | 0  | 2       | 1  | 0  | 1       | 0  | 0  | 0  | 1  | 0  | 6       | 0   | 0   | 2   | -1  | 0   | 1   | 53       | 0   | 0   | 29  | 22  | LU  |
| LV  | 0  | 0  | 0   | 0    | 3  | 16 | 0  | 1  | 0  | 25      | 8  | 0  | 0       | 0  | 0  | 0  | 2  | 0  | 4       | 15  | 0   | 1   | 4   | 0   | 0   | 53       | 0   | 0   | 112 | 73  | LV  |
| MD  | 0  | 0  | 0   | 0    | 1  | 16 | 0  | 23 | 2  | 27      | 2  | 0  | 2       | 0  | 0  | 3  | 43 | 0  | 2       | 2   | 4   | 4   | 2   | 1   | 2   | 66       | 0   | 0   | 181 | 74  | MD  |
| ME  | 47 | 2  | 0   | 0    | 0  | 9  | 1  | 8  | 28 | 5       | 0  | 1  | 3       | 0  | 0  | 3  | 5  | 0  | 3       | 0   | 1   | 28  | 1   | 1   | 10  | 85       | 0   | 0   | 229 | 110 | ME  |
| MK  | 2  | 39 | 0   | 0    | 0  | 8  | 1  | 12 | 31 | 8       | 0  | 0  | 2       | 0  | 0  | 5  | 7  | 0  | 3       | 1   | 2   | 17  | 1   | 1   | 9   | 80       | 0   | 0   | 244 | 129 | MK  |
| MT  | 1  | 0  | -64 | 0    | 0  | 3  | 2  | 3  | 2  | 2       | 0  | 1  | 1       | 0  | 0  | 2  | 2  | 0  | 6       | 0   | 0   | 37  | 1   | 1   | 31  | 87       | 0   | 0   | 70  | 56  | MT  |
| NL  | 0  | 0  | 0   | -102 | 3  | 4  | 1  | 0  | 0  | 3       | 1  | 0  | 1       | 0  | 0  | 0  | 1  | 0  | 7       | 1   | 0   | 1   | -21 | 0   | 0   | 51       | 0   | 0   | -86 | -95 | NL  |
| NO  | 0  | 0  | 0   | -1   | 13 | 2  | 0  | 0  | 0  | 7       | 6  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 7       | 3   | 0   | 0   | 5   | 0   | 0   | 53       | 0   | 0   | 45  | 22  | NO  |
| PL  | 0  | 0  | 0   | -1   | 3  | 44 | 0  | 3  | 1  | 12      | 3  | 0  | 3       | 0  | 0  | 0  | 6  | 0  | 4       | 6   | 0   | 1   | 4   | 0   | 1   | 55       | 0   | 0   | 138 | 108 | PL  |
| PT  | 0  | 0  | 0   | -0   | 0  | 0  | 79 | 0  | 0  | 1       | 0  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 34      | 0   | 0   | 5   | 1   | 0   | 7   | 99       | 0   | 0   | 161 | 159 | PT  |
| RO  | 1  | 1  | 0   | 0    | 1  | 16 | 0  | 82 | 9  | 17      | 1  | 0  | 3       | 0  | 0  | 3  | 24 | 0  | 2       | 1   | 3   | 5   | 1   | 1   | 4   | 66       | 0   | 0   | 223 | 155 | RO  |
| RS  | 5  | 4  | 0   | 0    | 1  | 14 | 1  | 22 | 50 | 8       | 0  | 1  | 5       | 0  | 0  | 2  | 8  | 0  | 2       | 1   | 1   | 11  | 1   | 0   | 6   | 69       | 0   | 0   | 223 | 127 | RS  |
| RU  | 0  | 0  | 0   | 0    | 1  | 2  | 0  | 1  | 0  | 71      | 1  | 0  | 0       | 0  | 0  | 1  | 4  | 0  | 1       | 2   | 1   | 1   | 1   | 2   | 0   | 60       | 0   | 0   | 101 | 14  | RU  |
| SE  | 0  | 0  | 0   | -1   | 8  | 4  | 0  | 0  | 0  | 9       | 15 | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 6       | 8   | 0   | 0   | 4   | 0   | 0   | 54       | 0   | 0   | 61  | 42  | SE  |
| SI  | 0  | 0  | 0   | -0   | 0  | 8  | 1  | 5  | 3  | 4       | 0  | 23 | 4       | 0  | 0  | 1  | 3  | 0  | 4       | 1   | 0   | 15  | 1   | 0   | 5   | 59       | 0   | 0   | 210 | 194 | SI  |
| SK  | 0  | 0  | 0   | -0   | 1  | 39 | 0  | 11 | 4  | 8       | 1  | 2  | 31      | 0  | 0  | 1  | 9  | 0  | 3       | 2   | 0   | 4   | 2   | 0   | 2   | 59       | 0   | 0   | 209 | 179 | SK  |
| ТJ  | 0  | 0  | 0   | 0    | 0  | 0  | 0  | 0  | 0  | 7       | 0  | 0  | 0       | 24 | 15 | 3  | 1  | 24 | 1       | 0   | 0   | 1   | 0   | 92  | 2   | 95       | 0   | 0   | 93  | 6   | ТJ  |
| ТМ  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | 1  | 0  | 41      | 0  | 0  | 0       | 1  | 22 | 6  | 5  | 13 | 1       | 0   | 1   | 2   | 0   | 77  | 2   | 114      | 0   | 0   | 128 | 14  | ТМ  |
| TR  | 0  | 0  | 0   | 0    | 0  | 2  | 0  | 5  | 2  | 19      | 0  | 0  | 0       | 0  | 0  | 78 | 10 | 0  | 1       | 1   | 8   | 17  | 0   | 30  | 7   | 96       | 0   | 0   | 158 | 38  | TR  |
| UA  | 0  | 0  | 0   | 0    | 2  | 16 | 0  | 8  | 1  | 46      | 2  | 0  | 1       | 0  | 0  | 3  | 41 | 0  | 2       | 3   | 3   | 3   | 2   | 2   | 2   | 63       | 0   | 0   | 165 | 55  | UA  |
| UZ  | 0  | 0  | 0   | 0    | 0  | 1  | 0  | 1  | 0  | 45      | 1  | 0  | 0       | 3  | 9  | 4  | 4  | 25 | 1       | 0   | 1   | 2   | 0   | 42  | 2   | 109      | 0   | 0   | 135 | 13  | UZ  |
| ATL | 0  | 0  | 0   | -0   | 2  | 1  | 2  | 0  | 0  | 5       | 1  | 0  | 0       | 0  | 0  | 0  | 0  | 0  | 18      | 1   | 0   | 1   | 1   | 0   | 1   | 66       | 0   | 0   | 24  | 16  | ATL |
| BAS | 0  | 0  | 0   | -2   | 6  | 10 | 0  | 0  | 0  | 16      | 17 | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 6       | 8   | 0   | 0   | 6   | 0   | 0   | 64       | 0   | 0   | 92  | 66  | BAS |
| BLS | 0  | 0  | 0   | 0    | 1  | 7  | 0  | 15 | 2  | 74      | 1  | 0  | 1       | 0  | 0  | 17 | 45 | 0  | 2       | 2   | 45  | 7   | 1   | 4   | 3   | 75       | 0   | 0   | 217 | 56  | BLS |
| MED | 1  | 1  | 0   | 0    | 0  | 3  | 2  | 4  | 3  | 6       | 0  | 1  | 1       | 0  | 0  | 17 | 5  | 0  | 7       | 0   | 2   | 106 | 1   | 1   | 20  | 91       | 0   | 0   | 178 | 139 | MED |
| NOS | 0  | 0  | 0   | -7   | 7  | 2  | 0  | 0  | 0  | 5       | 3  | 0  | 0       | 0  | 0  | 0  | 1  | 0  | 14      | 2   | 0   | 1   | -16 | 0   | 0   | 73       | 0   | 0   | 25  | 10  | NOS |
| AST | 0  | 0  | 0   | 0    | 0  | 0  | 0  | 1  | 0  | 12      | 0  | 0  | 0       | 1  | 4  | 8  | 2  | 3  | 1       | 0   | 1   | 3   | 0   | 169 | 2   | 93       | 0   | 0   | 50  | 8   | AST |
| NOA | 0  | 0  | 0   | 0    | 0  | 1  | 4  | 1  | 1  | 1       | 0  | 0  | 0       | 0  | 0  | 3  | 1  | 0  | 9       | 0   | 0   | 26  | 1   | 0   | 94  | 100      | 0   | 0   | 61  | 53  | NOA |
| EXC | 0  | 0  | 0   | -0   | 1  | 4  | 1  | 3  | 1  | 45      | 2  | 0  | 1       | 0  | 1  | 5  | 5  | 2  | 3       | 2   | 1   | 4   | 1   | 9   | 2   | 71       | 0   | 0   | 118 | 39  | EXC |
| EU  | 0  | 0  | 0   | -2   | 2  | 9  | 4  | 7  | 2  | 8       | 3  | 1  | 2       | 0  | 0  | 1  | 4  | 0  | 8       | 3   | 1   | 8   | 2   | 0   | 4   | 65       | 0   | 0   | 124 | 102 | EU  |
|     | ME | MK | MT  | NL   | NO | PL | ΡT | RO | RS | RU      | SE | SI | SK      | ТJ | ТΜ | TR | UA | UZ | ATL     | BAS | BLS | MED | NOS | AST | NOA | BIC      | DMS | VOL | EXC | EU  |     |

Table C.7: 2016 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL | AM | AT | ΑZ | ΒA | ΒE | ΒG | ΒY     | СН | CY | CZ | DE      | DK     | EE | ES | FI | FR     | GΒ      | GE | GR | HR | ΗU | IE | IS | IT     | KG | ΚZ | LT | LU | LV | MD |     |
|-----|----|----|----|----|----|----|----|--------|----|----|----|---------|--------|----|----|----|--------|---------|----|----|----|----|----|----|--------|----|----|----|----|----|----|-----|
| AL  | 15 | 0  | 2  | 0  | 1  | 1  | 1  | 1      | 1  | 0  | 2  | 7       | 0      | 0  | 3  | 0  | 5      | 3       | 0  | 4  | 1  | 2  | 0  | 0  | 15     | 0  | 0  | 0  | 0  | 0  | 0  | AL  |
| AM  | 0  | 26 | 0  | 4  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 2       | 0      | 0  | 1  | 0  | 1      | 1       | 3  | 1  | 0  | 0  | 0  | 0  | 2      | 0  | 0  | 0  | 0  | 0  | 0  | AM  |
| AT  | 0  | 0  | 17 | 0  | 0  | 2  | 0  | 1      | 5  | 0  | 6  | 30      | 0      | 0  | 2  | 0  | 10     | 8       | 0  | 0  | 1  | 2  | 0  | 0  | 17     | 0  | 0  | 0  | 0  | 0  | 0  | AT  |
| AZ  | 0  | 3  | 0  | 13 | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 2       | 0      | 0  | 1  | 0  | 1      | 1       | 5  | 1  | 0  | 0  | 0  | 0  | 2      | 0  | 1  | 0  | 0  | 0  | 0  | AZ  |
| BA  | 1  | 0  | 3  | 0  | 4  | 1  | 0  | 1      | 1  | 0  | 4  | 11      | 0      | 0  | 3  | 0  | 5      | 5       | 0  | 1  | 2  | 3  | 0  | 0  | 13     | 0  | 0  | 0  | 0  | 0  | 0  | BA  |
| BE  | 0  | 0  | 1  | 0  | 0  | 12 | 0  | 1      | 1  | 0  | 1  | 25      | 0      | 0  | 1  | 0  | 14     | 20      | 0  | 0  | 0  | 0  | 1  | 0  | 2      | 0  | 0  | 0  | 1  | 0  | 0  | BE  |
| BG  | 1  | 0  | 1  | 0  | 0  | 1  | 7  | 2      | 1  | 0  | 3  | 7       | 0      | 0  | 1  | 0  | 3      | 3       | 0  | 4  | 1  | 2  | 0  | 0  | 6      | 0  | 0  | 0  | 0  | 0  | 0  | BG  |
| BY  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 6      | 0  | 0  | 1  | 7       | 1      | 0  | 0  | 0  | 3      | 4       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | BY  |
| СН  | 0  | 0  | 3  | 0  | 0  | 2  | 0  | 1      | 21 | 0  | 2  | 26      | 0      | 0  | 2  | 0  | 10     | 7       | 0  | 0  | 1  | 1  | 0  | 0  | 21     | 0  | 0  | 0  | 0  | 0  | 0  | СН  |
| cv  | 0  | 0  | 1  | 0  | 0  | 0  | 1  | 2      | 0  | 1  | 2  | 20<br>5 | 0      | 0  | 2  | 0  | 2      | י<br>2  | 0  | 1  | 1  | 1  | 0  | 0  | 7      | 0  | 0  | 0  | 0  | 0  | 0  | cv  |
| C7  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 2      | 2  | -  | 17 | -<br>26 | 1      | 0  | 1  | 0  | 0      | 0       | 0  | -  | 1  | 2  | 0  | 0  | י<br>ה | 0  | 0  | 0  | 0  | 0  | 0  | C7  |
|     | 0  | 0  | 4  | 0  | 0  | 2  | 0  | 2      | 2  | 0  | 11 | 20      | 1      | 0  | 1  | 0  | 0      | 12      | 0  | 0  | 1  | 2  | 1  | 0  | 5<br>2 | 0  | 0  | 0  | 0  | 0  | 0  |     |
|     | 0  | 0  | 2  | 0  | 0  | 4  | 0  | 1      | 2  | 0  | 4  | 42      | -      | 0  | 1  | 0  | 11     | 15      | 0  | 0  | 0  | 1  | 1  | 0  | о<br>О | 0  | 0  | 0  | 0  | 0  | 0  |     |
|     | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 1      | 0  | 0  | 1  | 15      | 5<br>1 | 1  | 0  | 1  | 4      | 15      | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  |     |
| EE  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 1  | 1       | 1      | 1  | 0  | 1  | 2      | 1       | 0  | 0  | 0  | 0  | 0  | 0  | T      | 0  | 0  | 0  | 0  | 0  | 0  | EE  |
| ES  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 1  | 3       | 0      | 0  | 26 | 0  | 5      | 3       | 0  | 0  | 0  | 0  | 0  | 0  | 4      | 0  | 0  | 0  | 0  | 0  | 0  | ES  |
| FI  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 4       | 1      | 0  | 0  | 1  | 1      | 4       | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | FI  |
| FR  | 0  | 0  | 1  | 0  | 0  | 2  | 0  | 1      | 2  | 0  | 2  | 13      | 0      | 0  | 4  | 0  | 19     | 10      | 0  | 0  | 0  | 0  | 0  | 0  | 8      | 0  | 0  | 0  | 0  | 0  | 0  | FR  |
| GB  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 1  | 6       | 0      | 0  | 1  | 0  | 4      | 29      | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | GB  |
| GE  | 0  | 2  | 0  | 3  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 3       | 0      | 0  | 1  | 0  | 1      | 1       | 11 | 1  | 0  | 1  | 0  | 0  | 2      | 0  | 0  | 0  | 0  | 0  | 0  | GE  |
| GL  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0       | 0      | 0  | 0  | 0  | 0      | 0       | 0  | 0  | 0  | 0  | 0  | -0 | 0      | 0  | 0  | 0  | 0  | 0  | 0  | GL  |
| GR  | 1  | 0  | 1  | 0  | 0  | 1  | 2  | 2      | 1  | 0  | 2  | 7       | 0      | 0  | 2  | 0  | 4      | 3       | 0  | 22 | 1  | 2  | 0  | 0  | 10     | 0  | 0  | 0  | 0  | 0  | 0  | GR  |
| HR  | 1  | 0  | 5  | 0  | 1  | 1  | 0  | 1      | 1  | 0  | 6  | 15      | 0      | 0  | 3  | 0  | 6      | 6       | 0  | 1  | 5  | 3  | 0  | 0  | 19     | 0  | 0  | 0  | 0  | 0  | 0  | HR  |
| HU  | 0  | 0  | 4  | 0  | 0  | 1  | 1  | 2      | 1  | 0  | 6  | 14      | 0      | 0  | 2  | 0  | 5      | 5       | 0  | 1  | 1  | 7  | 0  | 0  | 8      | 0  | 0  | 0  | 0  | 0  | 0  | HU  |
| IE  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 0  | 4       | 0      | 0  | 1  | 0  | 2      | 12      | 0  | 0  | 0  | 0  | 3  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | IE  |
| IS  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1       | 0      | 0  | 0  | 0  | 1      | 3       | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | IS  |
| IT  | 0  | 0  | 4  | 0  | 1  | 1  | 0  | 1      | 3  | 0  | 3  | 14      | 0      | 0  | 5  | 0  | 11     | 6       | 0  | 1  | 2  | 1  | 0  | 0  | 92     | 0  | 0  | 0  | 0  | 0  | 0  | IT  |
| KG  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1       | 0      | 0  | 1  | 0  | 1      | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 13 | 2  | 0  | 0  | 0  | 0  | KG  |
| ΚZ  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 2       | 0      | 0  | 0  | 0  | 1      | 1       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 1  | 3  | 0  | 0  | 0  | 0  | ΚZ  |
| LT  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 3      | 0  | 0  | 2  | 9       | 1      | 0  | 0  | 0  | 3      | 7       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 2  | 0  | 1  | 0  | LT  |
| LU  | 0  | 0  | 1  | 0  | 0  | 6  | 0  | 1      | 1  | 0  | 2  | 29      | 0      | 0  | 1  | 0  | 15     | 14      | 0  | 0  | 0  | 0  | 1  | 0  | 2      | 0  | 0  | 0  | 4  | 0  | 0  | LU  |
| LV  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 2      | 0  | 0  | 1  | 7       | 1      | 0  | 0  | 0  | 2      | 7       | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 1  | 0  | 1  | 0  | LV  |
| MD  | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 2      | 0  | 0  | 2  | 7       | 0      | 0  | 1  | 0  | 2      | 3       | 0  | 1  | 0  | 1  | 0  | 0  | 3      | 0  | 0  | 0  | 0  | 0  | 2  | MD  |
| MF  | 3  | 0  | 2  | 0  | 1  | 1  | 0  | 1      | 1  | 0  | 3  | 8       | 0      | 0  | 3  | 0  | 5      | 4       | 0  | 2  | 1  | 2  | 0  | 0  | 14     | 0  | 0  | 0  | 0  | 0  | 0  | MF  |
| MK  | 2  | 0  | 1  | 0  | 1  | 1  | 1  | 1      | 1  | 0  | 3  | 7       | 0      | 0  | 2  | 0  | 4      | 3       | 0  | 10 | 1  | 2  | 0  | 0  | 9      | 0  | 0  | 0  | 0  | 0  | 0  | MK  |
| мт  | 0  | 0  | 2  | 0  | 1  | 1  | 1  | 1      | 1  | 0  | 3  | ,<br>Q  | 0      | 0  | 7  | 0  | a.     | 5       | 0  | 2  | 1  | 1  | 0  | 0  | 30     | 0  | 0  | 0  | 0  | 0  | 0  | мт  |
| NI  | 0  | 0  | 1  | 0  | 0  | 8  | 0  | 1      | 0  | 0  | 2  | 27      | 1      | 0  | 1  | 0  | 10     | 23      | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | NI  |
|     | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0      | 0  | 0  | 0  | 21      | 1      | 0  | 0  | 0  | 10     | 2J<br>5 | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  |     |
|     | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 2      | 1  | 0  | 0  | 16      | 1      | 0  | 1  | 0  | L<br>L | 5       | 0  | 0  | 0  | 1  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  |     |
|     | 0  | 0  | 1  | 0  | 0  | 2  | 0  | о<br>О | 1  | 0  | 4  | 10      | 1      | 0  | 12 | 0  | 2      | 1       | 0  | 0  | 0  | 1  | 0  | 0  | 2      | 0  | 0  | 0  | 0  | 0  | 0  |     |
|     | 0  | 0  | 1  | 0  | 0  | 1  | 1  | 0      | 0  | 0  | 0  | 3       | 0      | 0  | 13 | 0  | 3      | 2       | 0  | 1  | 1  | 0  | 0  | 0  | 2      | 0  | 0  | 0  | 0  | 0  | 1  |     |
| RU  | 1  | 0  | 1  | 0  | 1  | 1  | 1  | 2      | 1  | 0  | 3  | 0<br>10 | 0      | 0  | 1  | 0  | 3      | 3       | 0  | 1  | 1  | 2  | 0  | 0  | 5      | 0  | 0  | 0  | 0  | 0  | 1  | RU  |
| RS  | 1  | 0  | 2  | 0  | 1  | 1  | 1  | 1      | 1  | 0  | 4  | 10      | 0      | 0  | 2  | 0  | 4      | 4       | 0  | 2  | 1  | 3  | 0  | 0  | 8      | 0  | 0  | 0  | 0  | 0  | 0  | RS  |
| RU  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 2       | 0      | 0  | 0  | 0  | 1      | 1       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | RU  |
| SE  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 1  | 5       | 1      | 0  | 0  | 0  | 2      | 6       | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0  | SE  |
| SI  | 0  | 0  | 11 | 0  | 0  | 1  | 0  | 1      | 2  | 0  | 7  | 22      | 0      | 0  | 3  | 0  | 8      | 7       | 0  | 1  | 5  | 3  | 0  | 0  | 33     | 0  | 0  | 0  | 0  | 0  | 0  | SI  |
| SK  | 0  | 0  | 3  | 0  | 0  | 1  | 0  | 2      | 1  | 0  | 7  | 15      | 1      | 0  | 1  | 0  | 5      | 6       | 0  | 0  | 1  | 4  | 0  | 0  | 6      | 0  | 0  | 0  | 0  | 0  | 0  | SK  |
| ТJ  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1       | 0      | 0  | 0  | 0  | 0      | 0       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 2  | 1  | 0  | 0  | 0  | 0  | ТJ  |
| ТМ  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 2       | 0      | 0  | 1  | 0  | 1      | 1       | 0  | 0  | 0  | 0  | 0  | 0  | 2      | 0  | 1  | 0  | 0  | 0  | 0  | ТМ  |
| ΤR  | 0  | 1  | 1  | 0  | 0  | 0  | 1  | 1      | 0  | 0  | 1  | 4       | 0      | 0  | 1  | 0  | 2      | 2       | 0  | 2  | 0  | 1  | 0  | 0  | 4      | 0  | 0  | 0  | 0  | 0  | 0  | TR  |
| UA  | 0  | 0  | 1  | 0  | 0  | 1  | 0  | 2      | 0  | 0  | 2  | 6       | 0      | 0  | 1  | 0  | 2      | 3       | 0  | 1  | 0  | 1  | 0  | 0  | 2      | 0  | 0  | 0  | 0  | 0  | 0  | UA  |
| UZ  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 2       | 0      | 0  | 1  | 0  | 1      | 1       | 0  | 0  | 0  | 0  | 0  | 0  | 2      | 3  | 2  | 0  | 0  | 0  | 0  | UZ  |
| ATL | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 2       | 0      | 0  | 1  | 0  | 2      | 3       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | ATL |
| BAS | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 2      | 0  | 0  | 1  | 12      | 2      | 0  | 0  | 1  | 3      | 12      | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 1  | 0  | 1  | 0  | BAS |
| BLS | 0  | 0  | 1  | 1  | 0  | 1  | 2  | 3      | 0  | 0  | 2  | 7       | 0      | 0  | 1  | 0  | 3      | 3       | 2  | 2  | 1  | 1  | 0  | 0  | 4      | 0  | 0  | 0  | 0  | 0  | 1  | BLS |
| MED | 1  | 0  | 2  | 0  | 1  | 1  | 1  | 2      | 1  | 0  | 3  | 10      | 0      | 0  | 9  | 0  | 10     | 5       | 0  | 6  | 1  | 1  | 0  | 0  | 27     | 0  | 0  | 0  | 0  | 0  | 0  | MED |
| NOS | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 1      | 0  | 0  | 1  | 12      | 1      | 0  | 1  | 0  | 6      | 27      | 0  | 0  | 0  | 0  | 1  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0  | NOS |
| AST | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 1       | 0      | 0  | 0  | 0  | 1      | 1       | 0  | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 1  | 0  | 0  | 0  | 0  | AST |
| NOA | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 1  | 4       | 0      | 0  | 5  | 0  | 4      | 2       | 0  | 1  | 0  | 0  | 0  | 0  | 6      | 0  | 0  | 0  | 0  | 0  | 0  | NOA |
| EXC | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 5       | 0      | 0  | 1  | 0  | 2      | 3       | 0  | 0  | 0  | 0  | 0  | 0  | 3      | 0  | 1  | 0  | 0  | 0  | 0  | EXC |
| EU  | 0  | 0  | 2  | 0  | 0  | 1  | 0  | 1      | 1  | 0  | 2  | 12      | 1      | 0  | 5  | 0  | 7      | 8       | 0  | 1  | 1  | 1  | 0  | 0  | 10     | 0  | 0  | 0  | 0  | 0  | 0  | EU  |
|     | AL | AM | AT | ΑZ | ΒA | ΒE | ΒG | ΒY     | СН | CY | CZ | DE      | DK     | EE | ES | FI | FR     | GB      | GE | GR | HR | ΗU | IE | IS | ΙТ     | KG | ΚZ | LT | LU | LV | MD |     |
Table C.7 Cont.: 2016 country-to-country blame matrices for **SOMO35**. Units: ppb.d per 15% emis. red. of VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | ME | MK | МΤ | NL     | NO | PL     | РΤ | RO | RS | RU       | SE | SI | SK | ΤJ     | ТΜ | TR     | UA     | UZ | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC | DMS | VOL | EXC                  | EU  |      |
|-----|----|----|----|--------|----|--------|----|----|----|----------|----|----|----|--------|----|--------|--------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------------|-----|------|
| AL  | 1  | 2  | 0  | 1      | 0  | 5      | 0  | 2  | 5  | 5        | 0  | 0  | 1  | 0      | 0  | 2      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 4   | 14  | 0   | 0   | 93                   | 58  | AL   |
| АМ  | 0  | 0  | 0  | 0      | 0  | 2      | 0  | 1  | 0  | 9        | 0  | 0  | 0  | 0      | 0  | 6      | 3      | 0  | 0   | 0   | 0   | 0   | 0   | 54  | 2   | 12  | 0   | 0   | 67                   | 14  | AM   |
| AT  | 0  | 0  | 0  | 3      | 0  | 7      | 0  | 1  | 1  | 4        | 0  | 2  | 1  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 11  | 0   | 0   | 125                  | 111 | AT   |
| Δ7  | 0  | 0  | 0  | 0      | 0  | 2      | 0  | 1  | 0  | 16       | 0  | 0  | 0  | 0      | 0  | 4      | 4      | 0  | 0   | 0   | 0   | 0   | 0   | 41  | 1   | 15  | 0   | 0   | 64                   | 16  | Δ7   |
|     | 0  | 0  | 0  | 1      | 0  | - 7    | 0  | 2  | 5  | 10       | 0  | 1  | 1  | 0      | 0  | 1      | т<br>Э | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 10  | 0   | 0   | 0 <del>4</del><br>06 | 66  |      |
|     | 0  | 0  | 0  | 10     | 1  | 1      | 0  | 2  | 0  | 5<br>2   | 1  | 1  | 1  | 0      | 0  | 1      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 3   | 12  | 0   | 0   | 101                  | 00  |      |
| BE  | 0  | 0  | 0  | 10     | 1  | 4      | 0  | 0  | 0  | 3        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 101                  | 94  | BE   |
| BG  | 0  | 1  | 0  | 1      | 0  | (      | 0  | 4  | 3  | 9        | 0  | 0  | 1  | 0      | 0  | 8      | 5      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 13  | 0   | 0   | 84                   | 54  | BG   |
| BY  | 0  | 0  | 0  | 1      | 0  | 7      | 0  | 1  | 0  | 12       | 1  | 0  | 0  | 0      | 0  | 1      | 3      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 8   | 0   | 0   | 55                   | 32  | BY   |
| СН  | 0  | 0  | 0  | 2      | 0  | 4      | 0  | 0  | 0  | 3        | 0  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 10  | 0   | 0   | 142                  | 104 | СН   |
| CY  | 0  | 0  | 0  | 1      | 0  | 4      | 0  | 2  | 1  | 9        | 0  | 0  | 0  | 0      | 0  | 31     | 4      | 0  | 0   | 0   | 0   | 0   | 0   | 19  | 5   | 23  | 0   | 0   | 94                   | 43  | CY   |
| CZ  | 0  | 0  | 0  | 3      | 1  | 15     | 0  | 1  | 1  | 4        | 1  | 1  | 1  | 0      | 0  | 0      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 11  | 0   | 0   | 111                  | 99  | CZ   |
| DE  | 0  | 0  | 0  | 6      | 1  | 7      | 0  | 0  | 0  | 3        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 108                  | 99  | DE   |
| DK  | 0  | 0  | 0  | 6      | 2  | 5      | 0  | 0  | 0  | 5        | 2  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 8   | 0   | 0   | 68                   | 60  | DK   |
| EE  | 0  | 0  | 0  | 2      | 1  | 6      | 0  | 0  | 0  | 8        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 6   | 0   | 0   | 45                   | 33  | EE   |
| ES  | 0  | 0  | 0  | 1      | 0  | 1      | 3  | 0  | 0  | 1        | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 4   | 8   | 0   | 0   | 52                   | 49  | ES   |
| FI  | 0  | 0  | 0  | 1      | 0  | 3      | 0  | 0  | 0  | 5        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 0   | 0   | 26                   | 18  | FI   |
| FR  | 0  | 0  | 0  | 2      | 1  | 1      | 0  | 0  | 0  | 3        | 0  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 8   | 0   | 0   | 77                   | 60  | FR   |
|     | 0  | 0  | 0  | 2      | 1  | т<br>Э | 0  | 0  | 0  | ງ<br>ງ   | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | -   | 6   | 0   | 0   | 55                   | 50  | CP   |
| GD  | 0  | 0  | 0  | 0      | 1  | 2      | 0  | 1  | 1  | 12       | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 15  | 1   | 11  | 0   | 0   | 55                   | 10  | GD   |
| GE  | 0  | 0  | 0  | 0      | 0  | 2      | 0  | 1  | 1  | 13       | 0  | 0  | 0  | 0      | 0  | 5      | 4      | 0  | 0   | 0   | 0   | 0   | 0   | 15  | 1   | 11  | 0   | 0   | 59                   | 18  | GE   |
| GL  | 0  | 0  | 0  | 0      | 0  | 0      | 0  | 0  | 0  | 0        | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 0   | 1                    | 1   | GL   |
| GR  | 0  | 1  | 0  | 1      | 0  | 6      | 0  | 3  | 3  | 9        | 0  | 0  | 1  | 0      | 0  | 9      | 4      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 4   | 16  | 0   | 0   | 100                  | 69  | GR   |
| HR  | 0  | 0  | 0  | 2      | 0  | 9      | 0  | 2  | 3  | 5        | 0  | 2  | 1  | 0      | 0  | 1      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 13  | 0   | 0   | 105                  | 89  | HR   |
| HU  | 0  | 0  | 0  | 2      | 0  | 13     | 0  | 4  | 3  | 5        | 0  | 1  | 3  | 0      | 0  | 1      | 3      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 11  | 0   | 0   | 94                   | 79  | HU   |
| IE  | 0  | 0  | 0  | 2      | 1  | 2      | 0  | 0  | 0  | 2        | 0  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 4   | 0   | 0   | 35                   | 30  | IE   |
| IS  | 0  | 0  | 0  | 1      | 0  | 1      | 0  | 0  | 0  | 1        | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 11                   | 8   | IS   |
| IT  | 0  | 0  | 0  | 2      | 0  | 5      | 1  | 1  | 1  | 4        | 0  | 2  | 1  | 0      | 0  | 1      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 5   | 15  | 0   | 0   | 167                  | 154 | IT   |
| KG  | 0  | 0  | 0  | 0      | 0  | 1      | 0  | 0  | 0  | 4        | 0  | 0  | 0  | 1      | 1  | 1      | 1      | 16 | 0   | 0   | 0   | 0   | 0   | 34  | 1   | 10  | 0   | 0   | 46                   | 6   | KG   |
| ΚZ  | 0  | 0  | 0  | 0      | 0  | 1      | 0  | 0  | 0  | 12       | 0  | 0  | 0  | 0      | 0  | 1      | 2      | 1  | 0   | 0   | 0   | 0   | 0   | 12  | 0   | 10  | 0   | 0   | 33                   | 10  | ΚZ   |
| IТ  | 0  | 0  | 0  | 2      | 1  | 9      | 0  | 0  | 0  | 8        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 55                   | 41  | IТ   |
|     | 0  | 0  | 0  | 4      | 1  | 5      | 0  | 0  | 0  | 3        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 96                   | 80  | 111  |
|     | 0  | 0  | 0  | י<br>ר | 1  | 6      | 0  | 0  | 0  | 7        | 1  | 0  | 0  | 0      | 0  | 1      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 47                   | 32  |      |
|     | 0  | 0  | 0  | 1      | 0  | 7      | 0  | 1  | 1  | 10       | 0  | 0  | 1  | 0      | 0  | 2      | 7      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 11  | 0   | 0   | 65                   | 20  |      |
|     | 6  | 0  | 0  | 1      | 0  | 6      | 0  | 4  | 1  | 10       | 0  | 0  | 1  | 0      | 0  | ່<br>ງ | י<br>ר | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 10  | 0   | 0   | 05                   | 50  |      |
|     | 0  | 10 | 0  | 1      | 0  | 0      | 0  | 2  | 4  | 5        | 0  | 0  | 1  | 0      | 0  | 2      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 4   | 12  | 0   | 0   | 82                   | 50  | IVIE |
| MK  | 0  | 10 | 0  | 1      | 0  | 6      | 0  | 2  | 6  | 6        | 0  | 0  | 1  | 0      | 0  | 4      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 3   | 12  | 0   | 0   | 89                   | 55  | MK   |
| MI  | 0  | 0  | 12 | 2      | 0  | 5      | 1  | 2  | 1  | 4        | 0  | 0  | 1  | 0      | 0  | 2      | 2      | 0  | 0   | 0   | 0   | 1   | 0   | 1   | 15  | 21  | 0   | 0   | 108                  | 95  | MI   |
| NL  | 0  | 0  | 0  | 21     | 1  | 4      | 0  | 0  | 0  | 3        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 108                  | 102 | NL   |
| NO  | 0  | 0  | 0  | 1      | 2  | 2      | 0  | 0  | 0  | 3        | 1  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   | 23                   | 17  | NO   |
| PL  | 0  | 0  | 0  | 3      | 1  | 23     | 0  | 1  | 1  | 6        | 1  | 0  | 1  | 0      | 0  | 0      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10  | 0   | 0   | 85                   | 72  | PL   |
| ΡT  | 0  | 0  | 0  | 0      | 0  | 1      | 20 | 0  | 0  | 1        | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 7   | 0   | 0   | 50                   | 47  | ΡT   |
| RO  | 0  | 0  | 0  | 1      | 0  | 8      | 0  | 10 | 3  | 8        | 0  | 0  | 1  | 0      | 0  | 3      | 5      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 11  | 0   | 0   | 76                   | 52  | RO   |
| RS  | 0  | 2  | 0  | 1      | 0  | 8      | 0  | 4  | 13 | 6        | 0  | 0  | 1  | 0      | 0  | 2      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 12  | 0   | 0   | 88                   | 58  | RS   |
| RU  | 0  | 0  | 0  | 0      | 0  | 1      | 0  | 0  | 0  | 12       | 0  | 0  | 0  | 0      | 0  | 1      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 4   | 0   | 0   | 25                   | 9   | RU   |
| SE  | 0  | 0  | 0  | 2      | 1  | 3      | 0  | 0  | 0  | 3        | 1  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 3   | 0   | 0   | 29                   | 24  | SE   |
| SI  | 0  | 0  | 0  | 2      | 0  | 9      | 0  | 1  | 2  | 5        | 0  | 11 | 1  | 0      | 0  | 1      | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 14  | 0   | 0   | 141                  | 127 | SI   |
| SK  | 0  | 0  | 0  | 2      | 1  | 19     | 0  | 3  | 2  | 5        | 0  | 1  | 4  | 0      | 0  | 1      | 3      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 11  | 0   | 0   | 97                   | 82  | SK   |
| ті  | 0  | 0  | 0  | 0      | 0  | 1      | 0  | 0  | 0  | 4        | 0  | 0  | 0  | 2      | 1  | 1      | 1      | 7  | 0   | 0   | 0   | 0   | 0   | 33  | 1   | 7   | 0   | 0   | 23                   | 5   | TI   |
| тм  | 0  | 0  | 0  | 0      | 0  | 2      | 0  | 1  | 0  | 13       | 0  | 0  | 0  | 0      | 2  | 2      | 2      | 1  | 0   | 0   | 0   | 0   | 0   | 62  | 1   | 10  | 0   | 0   | 41                   | 14  | тм   |
| TP  | 0  | 0  | 0  | 1      | 0  | 2      | 0  | 2  | 1  | 10       | 0  | 0  | 0  | 0      | 0  | 26     | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 20  | 2   | 12  | 0   | 0   | 68                   | 25  | TP   |
|     | 0  | 0  | 0  | 1      | 0  | 3      | 0  | 2  | 1  | 9<br>1 F | 0  | 0  | 0  | 0      | 0  | 20     | 10     | 0  | 0   | 0   | 0   | 0   | 0   | 20  | 1   | 13  | 0   | 0   | 00                   | 20  |      |
|     | 0  | 0  | 0  | 1      | U  | 1      | 0  | 2  | Ţ  | 15       | 0  | U  | 0  | U<br>I | 0  | 3      | 10     | U  | 0   | 0   | 0   | U   | 0   | 1   | 1   | 11  | 0   | 0   | 05                   | 32  |      |
| UΖ  | 0  | 0  | 0  | U      | 0  | 2      | 0  | 1  | 0  | 12       | U  | U  | 0  | 1      | 1  | 2      | 2      | 11 | 0   | 0   | 0   | 0   | 0   | 29  | 1   | 10  | 0   | 0   | 48                   | 12  | UΖ   |
| ATL | 0  | 0  | 0  | 1      | 0  | 1      | 1  | 0  | 0  | 2        | 0  | 0  | 0  | 0      | 0  | 0      | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 2   | 0   | 0   | 18                   | 14  | ATL  |
| BAS | 0  | 0  | 0  | 4      | 1  | 9      | 0  | 0  | 0  | 9        | 3  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 9   | 0   | 0   | 66                   | 53  | BAS  |
| BLS | 0  | 0  | 0  | 1      | 1  | 7      | 0  | 4  | 2  | 26       | 1  | 0  | 1  | 0      | 0  | 21     | 11     | 0  | 0   | 0   | 0   | 0   | 0   | 4   | 2   | 18  | 0   | 0   | 111                  | 43  | BLS  |
| MED | 0  | 0  | 0  | 2      | 0  | 6      | 1  | 2  | 2  | 7        | 0  | 1  | 1  | 0      | 0  | 11     | 3      | 0  | 0   | 0   | 0   | 1   | 0   | 6   | 14  | 22  | 0   | 0   | 118                  | 91  | MED  |
| NOS | 0  | 0  | 0  | 5      | 3  | 4      | 0  | 0  | 0  | 4        | 1  | 0  | 0  | 0      | 0  | 0      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 8   | 0   | 0   | 76                   | 65  | NOS  |
| AST | 0  | 0  | 0  | 0      | 0  | 1      | 0  | 0  | 0  | 5        | 0  | 0  | 0  | 0      | 0  | 3      | 1      | 1  | 0   | 0   | 0   | 0   | 0   | 118 | 1   | 14  | 0   | 0   | 22                   | 8   | AST  |
| NOA | 0  | 0  | 0  | 1      | 0  | 2      | 1  | 1  | 1  | 2        | 0  | 0  | 0  | 0      | 0  | 2      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 2   | 21  | 12  | 0   | 0   | 36                   | 30  | NOA  |
| EXC | 0  | 0  | 0  | 1      | 0  | 3      | 0  | 1  | 0  | 10       | 0  | 0  | 0  | 0      | 0  | 2      | 2      | 1  | 0   | 0   | 0   | 0   | 0   | 7   | 1   | 8   | 0   | 0   | 44                   | 25  | EXC  |
| EU  | 0  | 0  | 0  | 2      | 1  | 6      | 1  | 1  | 1  | 4        | 1  | 0  | 0  | 0      | 0  | 1      | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 9   | 0   | 0   | 75                   | 65  | EU   |
| -   | ME | MK | MT | NL     | NO | PL     | РΤ | RO | RS | RIJ      | SE | SI | SK | T.J.   | ТМ | TR     | UA     | UZ | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC | DMS | VOL | EXC                  | EU  | -    |
|     | -  |    | -  | -      | -  | -      |    | -  | -  | -        |    |    |    | -      |    |        |        |    |     |     |     |     |     |     |     | -   |     |     |                      | -   |      |

Table C.8: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of PPM. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | AL  | AM | AT  | ΑZ | ΒA  | BE  | ΒG  | ΒY | СН | CY      | CZ  | DE  | DK  | EE | ES  | FI | FR   | GB  | GE  | GR | HR     | ΗU     | IE | IS | IT      | KG | ΚZ     | LT | LU | LV | MD  |     |
|----------|-----|----|-----|----|-----|-----|-----|----|----|---------|-----|-----|-----|----|-----|----|------|-----|-----|----|--------|--------|----|----|---------|----|--------|----|----|----|-----|-----|
| AL       | 263 | 0  | 0   | 0  | 2   | 0   | 2   | 0  | 0  | 0       | 1   | 1   | 0   | 0  | 1   | 0  | 1    | 0   | 0   | 6  | 1      | 2      | 0  | 0  | 7       | 0  | 0      | 0  | 0  | 0  | 0   | AL  |
| AM       | 0   | 58 | 0   | 3  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 7   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | AM  |
| AT       | 0   | 0  | 104 | 0  | 0   | 0   | 0   | 0  | 2  | 0       | 11  | 17  | 0   | 0  | 0   | 0  | 3    | 1   | 0   | 0  | 5      | 13     | 0  | 0  | 8       | 0  | 0      | 0  | 0  | 0  | 0   | AT  |
| AZ       | 0   | 4  | 0   | 29 | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 28  | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 1      | 0  | 0  | 0  | 0   | AZ  |
| BA       | 1   | 0  | 2   | 0  | 130 | 0   | 1   | 0  | 0  | 0       | 3   | 2   | 0   | 0  | 1   | 0  | 1    | 0   | 0   | 0  | 19     | 11     | 0  | 0  | 7       | 0  | 0      | 0  | 0  | 0  | 0   | BA  |
| BE       | 0   | -0 | 1   | -0 | 0   | 260 | 0   | 0  | 1  | -0      | 2   | 34  | 1   | 0  | 1   | 0  | 66   | 14  | -0  | 0  | 0      | 0      | 1  | 0  | 1       | -0 | -0     | 0  | 4  | 0  | 0   | BE  |
| BG       | 1   | 0  | 1   | 0  | 1   | 0   | 191 | 1  | 0  | 0       | 1   | 1   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 6  | 1      | 5      | 0  | 0  | 2       | 0  | 0      | 0  | 0  | 0  | 1   | BG  |
| BY       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 76 | 0  | 0       | 1   | 2   | 1   | 1  | 0   | 1  | 1    | 1   | 0   | 0  | 0      | 2      | 0  | 0  | 0       | 0  | 0      | 3  | 0  | 3  | 1   | BY  |
| СН       | 0   | 0  | 4   | 0  | 0   | 1   | 0   | 0  | 97 | 0       | 1   | 20  | 0   | 0  | 0   | 0  | 24   | 1   | 0   | 0  | 0      | 0      | 0  | 0  | 16      | 0  | 0      | 0  | 0  | 0  | 0   | СН  |
| CY       | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 0  | 0  | 24      | 0   | _0  | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 2  | 0      | 0      | 0  | 0  | 1       | 0  | 0      | 0  | 0  | 0  | 0   | CY  |
| C7       | 0   | 0  | 0   | 0  | 1   | 1   | 0   | 0  | 1  | 24<br>0 | 222 | 25  | 1   | 0  | 0   | 0  | 6    | 1   | 0   | 0  | 2      | 16     | 0  | 0  | 2       | 0  | 0      | 0  | 0  | 0  | 0   | C7  |
|          | 0   | 0  | 6   | 0  | 0   | 7   | 0   | 0  | 3  | 0       | 11  | 140 | 2   | 0  | 0   | 0  | 10   | 1   | 0   | 0  | ے<br>م | 20     | 0  | 0  | 1       | 0  | 0      | 0  | 1  | 0  | 0   |     |
|          | 0   | -0 | 0   | -0 | 0   | 2   | 0   | 0  | 0  | -0      | 11  | 140 | 107 | 0  | 0   | 0  | 2010 | 4   | 0   | 0  | 0      | 2      | 1  | 0  | 1       | 0  | 0      | 0  | 0  | 1  | 0   |     |
| EE       | 0   | -0 | 0   | -0 | 0   | 2   | 0   | 2  | 0  | -0      | 0   | 12  | 127 | 36 | 0   | 5  | 0    | 1   | -0  | -0 | 0      | 0      | 0  | 0  | 0       | -0 | 0      | 1  | 0  | 0  | 0   | EE  |
|          | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 2  | 0  | 0       | 0   | 1   | 1   | 0  | 110 | 0  | 5    | 1   | 0   | 0  | 0      | 0      | 0  | 0  | 1       | 0  | 0      | 1  | 0  | 9  | 0   |     |
| E3       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 1  | 0  | 0       | 0   | 0   | 1   | 1  | 110 | 27 | 5    | 1   | 0   | 0  | 0      | 0      | 0  | 0  | 1       | -0 | 0      | 0  | 0  | 1  | 0   | E3  |
|          | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 1  | 0  | 0       | 1   | 10  | 1   | 1  | 0   | 21 | 170  | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 0      | 0  | 1  | 1  | 0   |     |
| FR       | 0   | 0  | 0   | 0  | 0   | 5   | 0   | 0  | 2  | 0       | 1   | 10  | 0   | 0  | 3   | 0  | 1/2  | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 5       | 0  | 0      | 0  | 1  | 0  | 0   | FR  |
| GB       | 0   | -0 | 0   | -0 | 0   | 2   | 0   | 0  | 0  | -0      | 0   | 2   | 1   | 0  | 1   | 0  | (    | 153 | -0  | -0 | 0      | 0      | 4  | 0  | 0       | -0 | 0      | 0  | 0  | 0  | 0   | GB  |
| GE       | 0   | 4  | 0   | 2  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 136 | 0  | 0      | 0      | 0  | -0 | 0       | 0  | 0      | 0  | 0  | 0  | 0   | GE  |
| GL       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | GL  |
| GR       | 5   | 0  | 0   | 0  | 1   | 0   | 7   | 0  | 0  | 0       | 1   | 0   | 0   | 0  | 1   | 0  | 1    | 0   | 0   | 86 | 1      | 2      | 0  | 0  | 4       | 0  | 0      | 0  | 0  | 0  | 0   | GR  |
| HR       | 1   | 0  | 6   | 0  | 25  | 0   | 1   | 0  | 0  | 0       | 6   | 3   | 0   | 0  | 1   | 0  | 2    | 0   | 0   | 0  | 170    | 29     | 0  | 0  | 19      | 0  | 0      | 0  | 0  | 0  | 0   | HR  |
| HU       | 0   | 0  | 11  | 0  | 3   | 0   | 2   | 1  | 0  | 0       | 11  | 6   | 0   | 0  | 0   | 0  | 2    | 1   | 0   | 0  | 23     | 364    | 0  | 0  | 6       | 0  | 0      | 0  | 0  | 0  | 0   | HU  |
| IE       | -0  | 0  | 0   | 0  | 0   | 1   | 0   | 0  | 0  | 0       | 0   | 1   | 0   | 0  | 0   | 0  | 2    | 19  | -0  | -0 | 0      | 0      | 63 | 0  | 0       | -0 | 0      | 0  | 0  | 0  | 0   | IE  |
| IS       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | -0      | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 3  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | IS  |
| IT       | 1   | -0 | 2   | 0  | 1   | 0   | 0   | 0  | 1  | 0       | 1   | 1   | 0   | 0  | 2   | 0  | 6    | 0   | 0   | 0  | 3      | 1      | 0  | 0  | 387     | -0 | 0      | 0  | 0  | 0  | 0   | IT  |
| KG       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 33 | 5      | 0  | 0  | 0  | 0   | KG  |
| ΚZ       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 1  | 46     | 0  | 0  | 0  | 0   | ΚZ  |
| LT       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 12 | 0  | -0      | 2   | 3   | 2   | 1  | 0   | 1  | 1    | 1   | 0   | 0  | 0      | 1      | 0  | 0  | 0       | 0  | 0      | 33 | 0  | 11 | 0   | LT  |
| LU       | 0   | 0  | 1   | 0  | 0   | 34  | 0   | 0  | 1  | 0       | 3   | 58  | 0   | 0  | 1   | 0  | 70   | 7   | 0   | 0  | 0      | 0      | 0  | 0  | 1       | 0  | -0     | 0  | 93 | 0  | 0   | LU  |
| LV       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 6  | 0  | 0       | 1   | 2   | 2   | 3  | 0   | 2  | 0    | 1   | 0   | 0  | 0      | 1      | 0  | 0  | 0       | 0  | 0      | 5  | 0  | 74 | 0   | LV  |
| MD       | 0   | 0  | 1   | 0  | 0   | 0   | 2   | 2  | 0  | 0       | 1   | 1   | 0   | 0  | 0   | 0  | 1    | 0   | 0   | 0  | 1      | 4      | 0  | 0  | 1       | 0  | 0      | 0  | 0  | 0  | 125 | MD  |
| ME       | 17  | 0  | 1   | 0  | 8   | 0   | 1   | 0  | 0  | 0       | 1   | 1   | 0   | 0  | 1   | 0  | 1    | 0   | 0   | 1  | 2      | 3      | 0  | 0  | 5       | 0  | 0      | 0  | 0  | 0  | 0   | ME  |
| MK       | 18  | 0  | 1   | 0  | 1   | 0   | 11  | 0  | 0  | 0       | 1   | 1   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 18 | 1      | 4      | 0  | 0  | 3       | 0  | 0      | 0  | 0  | 0  | 0   | MK  |
| ΜТ       | 0   | 0  | 0   | 0  | 1   | 0   | 0   | 0  | 0  | 0       | 0   | 1   | 0   | 0  | 3   | 0  | 5    | 0   | 0   | 1  | 1      | 1      | 0  | 0  | 19      | 0  | 0      | 0  | 0  | 0  | 0   | ΜТ  |
| NL       | 0   | -0 | 1   | -0 | 0   | 60  | 0   | 0  | 0  | -0      | 2   | 51  | 2   | 0  | 0   | 0  | 23   | 17  | -0  | -0 | 0      | 0      | 1  | 0  | 0       | -0 | -0     | 0  | 1  | 0  | 0   | NL  |
| NO       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 1   | 0  | 0   | 0  | 0    | 1   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | NO  |
| PL       | 0   | 0  | 1   | 0  | 0   | 1   | 0   | 4  | 0  | 0       | 14  | 11  | 2   | 0  | 0   | 0  | 2    | 1   | 0   | 0  | 1      | 7      | 0  | 0  | 1       | 0  | 0      | 1  | 0  | 1  | 0   | PL  |
| PT       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 36  | 0  | 2    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | -0 | 0      | 0  | 0  | 0  | 0   | PT  |
| RO       | 0   | 0  | 1   | 0  | 1   | 0   | 6   | 1  | 0  | 0       | 2   | 1   | 0   | 0  | 0   | 0  | -    | 0   | 0   | 1  | 2      | 16     | 0  | 0  | 2       | 0  | 0      | 0  | 0  | 0  | 4   | RO  |
| RS       | 5   | 0  | 2   | 0  | 9   | 0   | 18  | 1  | 0  | 0       | 4   | 2   | 0   | 0  | 0   | 0  | 1    | 0   | 0   | 2  | 10     | 26     | 0  | 0  | 3       | 0  | 0      | 0  | 0  | 0  | 0   | RS  |
| RU       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 1  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 4      | 0  | 0  | 0  | 0   | RU  |
| SE       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | -0      | 0   | 1   | 3   | 0  | 0   | 1  | 0    | 1   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | SE  |
| SL       | 0   | 0  | 22  | 0  | 2   | 0   | 0   | 0  | 0  | 0       | 5   | 4   | 0   | 0  | 1   | 0  | 2    | 0   | 0   | 0  | 47     | 13     | 0  | 0  | 40      | 0  | 0      | 0  | 0  | 0  | 0   | SL  |
| SK       | 0   | 0  | 6   | 0  | 1   | 0   | 1   | 1  | 0  | 0       | 20  | 6   | 0   | 0  | 0   | 0  | 2    | 1   | 0   | 0  | -1     | 78     | 0  | 0  | -0<br>2 | 0  | 0      | 0  | 0  | 0  | 0   | SK  |
| ті       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 20  | 0   | 0   | 0  | 0   | 0  | 2    | 0   | 0   | 0  | -      | 0      | 0  | 0  | 0       | 1  | 1      | 0  | 0  | 0  | 0   | ті  |
| тм       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 1      | 0  | 0  | 0  | 0   | тм  |
| TP       | 0   | 1  | 0   | 0  | 0   | 0   | 1   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 1  | 0      | 0      | 0  | 0  | 0       | 0  | -      | 0  | 0  | 0  | 0   | TP  |
|          | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 1  | 0  | 0       | 1   | 1   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 1  | 0      | 2      | 0  | 0  | 1       | 0  | 1      | 0  | 0  | 1  | 1   |     |
|          | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 4  | 0  | 0       | 1   | 1   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | د<br>0 | 0  | 0  | 1       | 0  | 1<br>0 | 0  | 0  | 1  | 4   |     |
| υZ<br>47 | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | U       | 0   | 0   | 0   | 0  | 0   | U  | 1    | U   | U   | 0  | 0      | 0      | 0  | 0  | 0       | 3  | ŏ      | U  | 0  | U  | U   |     |
| AIL      | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 2   | 0  | 1    | 1   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | AIL |
| BAS      | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 1  | 0  | -0      | 1   | 5   | 9   | 2  | 0   | 5  | 1    | 2   | 0   | 0  | 0      | 1      | 0  | U  | 0       | 0  | 0      | 1  | 0  | 3  | 0   | BAS |
| BLS      | 0   | 0  | 0   | 0  | 0   | 0   | 2   | 1  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 7   | 1  | 0      | 1      | 0  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 2   | BLS |
| MED      | 2   | 0  | 0   | 0  | 1   | 0   | 1   | 0  | 0  | 0       | 0   | 1   | 0   | 0  | 7   | 0  | 7    | 0   | 0   | 5  | 1      | 1      | 0  | 0  | 21      | 0  | 0      | 0  | 0  | 0  | 0   | MED |
| NOS      | 0   | 0  | 0   | 0  | 0   | 3   | 0   | 0  | 0  | -0      | 0   | 5   | 3   | 0  | 1   | 0  | 8    | 20  | 0   | 0  | 0      | 0      | 1  | 0  | 0       | 0  | 0      | 0  | 0  | 0  | 0   | NOS |
| AST      | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 0   | 0  | 0    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 0       | 0  | 1      | 0  | 0  | 0  | 0   | AST |
| NOA      | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0  | 0  | 0       | 0   | 0   | 0   | 0  | 3   | 0  | 1    | 0   | 0   | 0  | 0      | 0      | 0  | 0  | 2       | 0  | 0      | 0  | 0  | 0  | 0   | NOA |
| EXC      | 1   | 0  | 1   | 0  | 1   | 1   | 1   | 2  | 0  | 0       | 2   | 4   | 1   | 0  | 3   | 1  | 6    | 3   | 1   | 1  | 1      | 3      | 0  | 0  | 7       | 1  | 9      | 0  | 0  | 1  | 0   | EXC |
| EU       | 0   | 0  | 4   | 0  | 1   | 4   | 6   | 1  | 1  | 0       | 7   | 16  | 2   | 1  | 14  | 2  | 26   | 11  | 0   | 3  | 4      | 11     | 1  | 0  | 29      | 0  | 0      | 1  | 0  | 2  | 0   | EU  |
|          | AL  | AM | AT  | ΑZ | ΒA  | ΒE  | ΒG  | ΒY | CH | CY      | CZ  | DE  | DK  | EE | ES  | FI | FR   | GB  | GE  | GR | HR     | ΗU     | IE | IS | IT      | KG | ΚZ     | LT | LU | LV | MD  |     |

Table C.8 Cont.: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of PPM. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

| Al.   7   9   9   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | ME     | MK     | ΜT     | NL     | NO     | PL  | ΡT     | RO     | RS     | RU     | SE | SI  | SK     | ТJ     | ТМ     | TR     | UA     | UZ | ATL    | BAS | BLS    | MED  | NOS | AST    | NOA    | BIC    | DMS    | VOL    | EXC | EU  |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--------|--------|--------|--------|-----|--------|--------|--------|--------|----|-----|--------|--------|--------|--------|--------|----|--------|-----|--------|------|-----|--------|--------|--------|--------|--------|-----|-----|-----|
| AM   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AL  | 7      | 19     | 0      | 0      | 0      | 1   | 0      | 2      | 26     | 0      | 0  | 0   | 1      | 0      | 0      | 1      | 1      | 0  | 0      | 0   | 0      | 3    | 0   | 0      | 1      | 0      | 0      | 0      | 347 | 27  | AL  |
| AT   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AM  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 21     | 0      | 0  | 0      | 0   | 0      | 0    | 0   | 6      | 0      | 0      | 0      | 0      | 91  | 0   | AM  |
| M2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AT  | 0      | 0      | 0      | 0      | 0      | 4   | 0      | 2      | 1      | 0      | 0  | 14  | 3      | 0      | 0      | 0      | 1      | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 192 | 187 | AT  |
| bit   bit<                                                                                                                                                                                                                                                                                                                                                   | AZ  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 3      | 0  | 0   | 0      | 0      | 0      | 6      | 1      | 0  | 0      | 0   | 0      | 0    | 0   | 8      | 0      | 0      | 0      | 0      | 73  | 0   | AZ  |
| BE   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BA  | 4      | 0      | 0      | 0      | 0      | 5   | 0      | 3      | 16     | 0      | 0  | 1   | 3      | 0      | 0      | 1      | 1      | 0  | 0      | 0   | 0      | 1    | 0   | 0      | 1      | 0      | 0      | 0      | 213 | 58  | BA  |
| BC   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BE  | 0      | 0      | 0      | 14     | 0      | 2   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | -0     | -0     | -0     | 0      | -0 | 1      | 0   | 0      | 0    | 12  | -0     | 0      | 0      | 0      | 0      | 401 | 400 | BE  |
| FY   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BG  | 0      | 4      | 0      | 0      | 0      | 3   | 0      | 30     | 15     | 2      | 0  | 0   | 1      | 0      | 0      | 21     | 6      | 0  | 0      | 0   | 1      | 1    | 0   | 0      | 0      | 0      | 0      | 0      | 297 | 244 | BG  |
| CH   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BY  | 0      | 0      | 0      | 0      | 0      | 19  | 0      | 4      | 0      | 9      | 1  | 0   | 1      | 0      | 0      | 1      | 10     | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 138 | 39  | ΒY  |
| CY   0   0   0   0   1   0   1   0   7   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CH  | 0      | 0      | 0      | 0      | 0      | 1   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 165 | 68  | СН  |
| C   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CY  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 1      | 0      | 1      | 0  | 0   | 0      | 0      | 0      | 72     | 1      | 0  | 0      | 0   | 0      | 11   | 0   | 7      | 2      | 0      | 0      | 0      | 105 | 29  | CY  |
| DE   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CZ  | 0      | 0      | 0      | 0      | 0      | 31  | 0      | 3      | 2      | 0      | 0  | 2   | 13     | 0      | 0      | 0      | 1      | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 352 | 347 | CZ  |
| DK   0   0   0   0   1   0   0   0   0   5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DE  | 0      | 0      | 0      | 4      | 0      | 12  | 0      | 1      | 0      | 0      | 0  | 1   | 1      | 0      | 0      | 0      | 0      | 0  | 0      | 1   | 0      | 0    | 3   | -0     | 0      | 0      | 0      | 0      | 215 | 211 | DE  |
| EE   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DK  | 0      | 0      | 0      | 2      | 3      | 7   | 0      | 0      | 0      | 1      | 4  | 0   | 0      | -0     | -0     | -0     | 0      | -0 | 0      | 5   | 0      | 0    | 4   | -0     | 0      | 0      | 0      | 0      | 173 | 168 | DK  |
| FI   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EE  | 0      | 0      | 0      | 0      | 1      | 5   | 0      | 1      | 0      | 7      | 2  | 0   | 0      | 0      | 0      | 0      | 1      | 0  | 0      | 3   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 76  | 64  | EE  |
| FI   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ES  | 0      | 0      | 0      | 0      | 0      | 0   | 7      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 2      | 0   | 0      | 4    | 0   | 0      | 1      | 0      | 0      | 0      | 125 | 125 | ES  |
| FR   0   0   0   1   0   0   0   0   0   0   0   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FI  | 0      | 0      | 0      | 0      | 1      | 1   | 0      | 0      | 0      | 4      | 2  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 0      | 1   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 41  | 35  | FI  |
| GE   -0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FR  | 0      | 0      | 0      | 1      | 0      | 1   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 1      | 0   | 0      | 1    | 2   | 0      | 0      | 0      | 0      | 0      | 209 | 206 | FR  |
| GE   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GB  | -0     | -0     | 0      | 1      | 0      | 1   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | -0     | 0      | 0      | 0      | 0  | 2      | 0   | 0      | 0    | 4   | -0     | 0      | 0      | 0      | 0      | 172 | 172 | GB  |
| GL   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 2      | 0  | 0   | 0      | 0      | 0      | 11     | 1      | 0  | 0      | 0   | 0      | 0    | 0   | 1      | 0      | 0      | 0      | 0      | 157 | 1   | GE  |
| GR   0   10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GL  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 0   | 0   | GL  |
| HR   1   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GR  | 0      | 10     | 0      | 0      | 0      | 1   | 0      | 4      | 5      | 1      | 0  | 0   | 1      | 0      | 0      | 25     | 3      | 0  | 0      | 0   | 0      | 9    | 0   | 0      | 1      | 0      | 0      | 0      | 159 | 108 | GR  |
| HU   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HR  | 1      | 0      | 0      | 0      | 0      | 6   | 0      | 5      | 16     | 0      | 0  | 18  | 3      | 0      | 0      | 1      | 1      | 0  | 0      | 0   | 0      | 3    | 0   | 0      | 1      | 0      | 0      | 0      | 317 | 271 | HR  |
| IF   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ΗU  | 0      | 1      | 0      | 0      | 0      | 16  | 0      | 39     | 18     | 1      | 0  | 10  | 33     | 0      | 0      | 1      | 5      | 0  | 0      | 0   | 0      | 1    | 0   | 0      | 0      | 0      | 0      | 0      | 556 | 525 | ΗU  |
| IS   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IE  | 0      | -0     | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | -0     | 0      | 0  | 2      | 0   | 0      | 0    | 1   | -0     | 0      | 0      | 0      | 0      | 88  | 88  | IE  |
| IT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IS  | 0      | 0      | -0     | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 1      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 3   | 1   | IS  |
| KG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IT  | 0      | 0      | 0      | 0      | 0      | 1   | 0      | 0      | 1      | 0      | 0  | 5   | 0      | -0     | 0      | 0      | 0      | 0  | 0      | 0   | 0      | 8    | 0   | 0      | 2      | 0      | 0      | 0      | 417 | 412 | IT  |
| KZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KG  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 1      | 0      | 0      | 0      | 5  | 0      | 0   | 0      | 0    | 0   | 6      | 0      | 0      | 0      | 0      | 45  | 0   | KG  |
| Int 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K7  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 10     | 0  | 0   | 0      | 0      | 0      | 0      | 1      | 1  | 0      | 0   | 0      | 0    | 0   | 6      | 0      | 0      | 0      | 0      | 60  | 1   | K7  |
| Int 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IT  | 0      | 0      | 0      | 0      | 1      | 23  | 0      | 2      | 0      | 7      | 1  | 0   | 1      | 0      | 0      | 0      | 4      | 0  | 0      | 1   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 109 | 85  | IT  |
| ID   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10  | 0      | 0      | 0      | 2      | 0      | -3  | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 0      | 0   | 0      | 0    | 2   | -0     | 0      | 0      | 0      | 0      | 278 | 276 | 10  |
| Int   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IV  | 0      | 0      | 0      | 0      | 1      | 10  | 0      | 1      | 0      | 5      | 2  | 0   | 1      | 0      | 0      | 0      | 2      | 0  | 0      | 2   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 120 | 105 | IV  |
| Image <th< td=""><td>MD</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>11</td><td>0</td><td>82</td><td>2</td><td>5</td><td>0</td><td>0</td><td>2</td><td>0</td><td>0</td><td>7</td><td>37</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>287</td><td>109</td><td>MD.</td></th<> | MD  | 0      | 0      | 0      | 0      | 0      | 11  | 0      | 82     | 2      | 5      | 0  | 0   | 2      | 0      | 0      | 7      | 37     | 0  | 0      | 0   | 1      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 287 | 109 | MD. |
| MK 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MF  | 119    | 1      | 0      | 0      | 0      | 2   | 0      | 2      | 21     | 0      | 0  | 0   | 1      | 0      | 0      | 1      | 1      | 0  | 0      | 0   | 0      | 2    | 0   | 0      | 1      | 0      | 0      | 0      | 191 | 22  | MF  |
| Imit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MK  | 1      | 271    | 0      | 0      | 0      | 2   | 0      | 4      | 34     | 0      | 0  | 0   | 1      | 0      | 0      | 5      | 2      | 0  | 0      | 0   | 0      | - 1  | 0   | 0      | - 1    | 0      | 0      | 0      | 379 | 48  | MK  |
| NL -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | МТ  | 0      | 0      | 99     | 0      | 0      | 1   | 0      | 0      | 1      | 0      | 0  | 0   | 0      | 0      | 0      | 1      | 0      | 0  | 0      | 0   | 0      | 70   | 0   | 0      | 10     | 0      | 0      | 0      | 136 | 132 | МТ  |
| NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NI  | -0     | -0     | 0      | 97     | 1      | 3   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | -0     | -0     | -0     | 0      | -0 | 1      | 0   | 0      | 0    | 20  | -0     | -0     | 0      | 0      | 0      | 261 | 260 | NI  |
| No. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO  | 0<br>0 | 0      | 0      | 0      | 30     | 0   | 0      | 0      | 0      | 1      | 1  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 1      | 0   | 0      | 0    | 1   | 0      | 0      | 0      | 0      | 0      | 35  | 4   | NO  |
| Int I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PI  | 0      | 0      | 0      | 0      | 1      | 207 | 0      | 5      | 1      | 3      | 1  | 1   | 13     | 0      | 0      | 0      | 6      | 0  | 0      | 1   | 0      | 0    | 1   | 0      | 0      | 0      | 0      | 0      | 287 | 271 | PI  |
| No O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PT  | 0      | 0      | 0      | 0      | 0      | 0   | 152    | 0      | 0      | 0      | 0  | 0   | 0      | 0      | 0      | 0      | 0      | 0  | 5      | 0   | 0      | 1    | 0   | -0     | 1      | 0      | 0      | 0      | 191 | 101 | PT  |
| RS 5 14 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RO  | 0      | 1      | 0      | 0      | 0      | 6   | 0      | 327    | 11     | 2      | 0  | 1   | 3      | 0      | 0      | 4      | 10     | 0  | 0      | 0   | 1      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 404 | 369 | RO  |
| RU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS  | 5      | 14     | 0      | 0      | 0      | 6   | 0      | 24     | 268    | 1      | 0  | 1   | 4      | 0      | 0      | 2      | -3     | 0  | 0      | 0   | 0      | 1    | 0   | 0      | 0      | 0      | 0      | 0      | 412 | 104 | RS  |
| SE 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RU  | 0      | 0      | 0      | 0      | 0      | 1   | 0      |        | 0      | 30     | 0  | 0   | 0      | 0      | 0      | 0      | 2      | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 41  | 3   | RU  |
| SI 0 0 0 4 0 3 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SE  | 0      | 0      | 0      | 0      | 6      | 2   | 0      | 0      | 0      | 1      | 15 | 0   | 0      | 0      | 0      | 0      | 1      | 0  | 0      | 1   | 0      | 0    | 1   | 0      | 0      | 0      | 0      | 0      | 33  | 26  | SE  |
| SK 0 0 0 35 0 15 4 1 0 3 25 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>SI</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>0</td> <td>3</td> <td>2</td> <td>0</td> <td>0</td> <td>311</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>462</td> <td>456</td> <td>SI</td>                                                                                                                                                                                                                                                                                                                                   | SI  | 0      | 0      | 0      | 0      | 0      | 4   | 0      | 3      | 2      | 0      | 0  | 311 | 2      | 0      | 0      | 0      | 1      | 0  | 0      | 0   | 0      | 2    | 0   | 0      | 0      | 0      | 0      | 0      | 462 | 456 | SI  |
| TJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SK  | 0      | 0      | 0      | 0      | 0      | 35  | 0      | 15     | 4      | 1      | 0  | 3   | 250    | 0      | 0      | 1      | 5      | 0  | 0      | 0   | 0      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 439 | 425 | SK  |
| TM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TI  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0  | 0   | 0      | 21     | 1      | 0      | 0      | 6  | 0      | 0   | 0      | 0    | 0   | 15     | 0      | 0      | 0      | 0      | .05 | 0   | TI  |
| TR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ТМ  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 3      | 0  | 0   | 0      | 0      | 21     | 1      | 1      | 5  | 0      | 0   | 0      | 0    | 0   | 8      | 0      | 0      | 0      | 0      | 36  | 0   | ТМ  |
| UA 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TR  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 2      | 0      | 1      | 0  | 0   | 0      | 0      | 0      | 228    | 1      | 0  | 0      | 0   | 1      | 3    | 0   | 5      | 0      | 0      | 0      | 0      | 239 | 5   | TR  |
| UZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UA  | 0      | 0      | 0      | 0      | 0      | 12  | 0      | 15     | 1      | 12     | 0  | 0   | 2      | 0      | 0      | 5      | 99     | 0  | 0      | 0   | 1      | 0    | 0   | 0      | 0      | 0      | 0      | 0      | 167 | 41  | UA  |
| ATL 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UZ  | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 3      | 0  | 0   | 0      | 2      | 3      | 1      | 1      | 33 | 0      | 0   | 0      | 0    | 0   | 3      | 0      | 0      | 0      | 0      | 54  | 0   | UZ  |
| BAS 0 0 1 2 12 0 0 4 7 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATI | ñ      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0   | 1      | 0<br>0 | 0<br>0 | 1      | 0  | ñ   | 0      | 0      | 0      | 0      | 0      | 0  | 3      | 0   | 0      | 0    | 0   | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 8   | 7   | ATI |
| BLS 0 0 0 2 0 13 1 10 0 0 2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>BAS</td> <td>n</td> <td>n</td> <td>0<br/>0</td> <td>1</td> <td>2</td> <td>12</td> <td>Ô</td> <td>0<br/>0</td> <td>0<br/>0</td> <td>4</td> <td>7</td> <td>n</td> <td>0<br/>0</td> <td>0<br/>0</td> <td>0<br/>0</td> <td>0<br/>0</td> <td>1</td> <td>0</td> <td>0</td> <td>9</td> <td>0<br/>0</td> <td>0</td> <td>1</td> <td>0<br/>0</td> <td>0<br/>0</td> <td>n</td> <td>0<br/>0</td> <td>0<br/>0</td> <td>61</td> <td>52</td> <td>BAS</td>                                                                                                                                                                                                                                                            | BAS | n      | n      | 0<br>0 | 1      | 2      | 12  | Ô      | 0<br>0 | 0<br>0 | 4      | 7  | n   | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 1      | 0  | 0      | 9   | 0<br>0 | 0    | 1   | 0<br>0 | 0<br>0 | n      | 0<br>0 | 0<br>0 | 61  | 52  | BAS |
| MED 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLS | ñ      | 0<br>0 | 0<br>0 | 0      | 0      | 2   | 0<br>0 | 13     | 1      | 10     | 0  | ñ   | 1      | 0<br>0 | 0      | 62     | 19     | 0  | 0<br>0 | 0   | 9      | 2    | 0   | 0      | 0<br>0 | 0<br>0 | 0<br>0 | 0      | 126 | 23  | BLS |
| NOS 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MED | 0      | 1      | 0      | 0      | 0      | 1   | 1      | 1      | 1      | 0      | 0  | 1   | 0      | 0      | 0      | 23     | 1      | 0  | 0      | 0   | 0      | - 28 | 0   | 3      | 9      | 0      | 0      | 0      | 78  | 49  | MED |
| AST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOS | ñ      | 0      | 0<br>0 | 3      | 4      | 2   | 0      | 0      | 0      | 0<br>0 | 1  | 0   | 0      | 0<br>0 | 0      | 0      | 0      | 0  | 1      | 0   | 0      | 0    | 11  | 0      | 0      | 0<br>0 | 0<br>0 | 0      | 52  | 47  | NOS |
| NOA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AST | 0      | 0      | 0      | 0      | 0      | 0   | 0      | 0      | 0      | 1      | 0  | 0   | 0      | 0      | 1      | 6      | 0      | 0  | 0      | 0   | 0      | 0    | 0   | 219    | 0      | 0      | 0      | 0      | 10  | 0   | AST |
| EXC 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NOA | ñ      | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0   | 1      | 0<br>0 | 0<br>0 | 0      | 0  | ñ   | 0      | 0<br>0 | 0      | 2      | 0<br>0 | 0  | 1      | 0   | 0      | 4    | 0   |        | 40     | 0<br>0 | 0<br>0 | 0      | 12  | 9   | NOA |
| EU 0 0 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXC | 0      | 1      | 0      | 0      | 1      | 5   | 1      | 6      | 2      | 14     | 1  | 1   | 1      | 0      | 1      | 11     | 5      | 1  | 0      | 0   | 0      | 1    | 0   | 2      | 0      | 0      | 0      | 0      | 100 | 51  | EXC |
| ME MK MT NL NO PL PT RO RS RU SE SI SK TJ TM TR UA UZ ATL BAS BLS MED NOS AST NOA BIC DMS VOL EXC EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EU  | 0      | 0      | 0      | 2      | 1      | 19  | 4      | 20     | 2      | 1      | 2  | 3   | 5      | 0      | 0      | 2      | 2      | 0  | 1      | 0   | 0      | 2    | 1   | 0      | 0      | 0      | 0      | 0      | 208 | 197 | EU  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | ME     | MK     | MT     | NL     | NO     | PL  | ΡT     | RO     | RS     | RU     | SE | SI  | SK     | ТJ     | ТМ     | TR     | UA     | UZ | ATL    | BAS | BLS    | MED  | NOS | AST    | NOA    | BIC    | DMS    | VOL    | EXC | EU  |     |

Table C.9: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of SO<sub>x</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL | AM  | AT | ΑZ | ΒA    | BE     | BG | ΒY | СН | CY | CZ  | DE      | DK | EE | ES  | FI | FR      | GΒ       | GE | GR | HR | ΗU | IE | IS | IT       | KG | ΚZ | LT     | LU | LV | MD |     |
|-----|----|-----|----|----|-------|--------|----|----|----|----|-----|---------|----|----|-----|----|---------|----------|----|----|----|----|----|----|----------|----|----|--------|----|----|----|-----|
| AL  | 84 | 0   | 1  | 0  | 39    | 0      | 5  | 0  | 0  | 0  | 3   | 4       | 0  | 0  | 3   | 0  | 1       | 0        | 0  | 14 | 1  | 1  | 0  | 0  | 10       | 0  | 0  | 0      | 0  | 0  | 0  | AL  |
| AM  | 0  | 219 | 0  | 8  | 0     | 0      | 0  | 0  | 0  | 1  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 5  | 0  | 0  | 0  | -0 | -0 | 0        | 0  | 6  | 0      | 0  | 0  | 0  | AM  |
| AT  | 0  | 0   | 24 | 0  | 6     | 1      | 1  | 0  | 2  | 0  | 20  | 43      | 0  | 0  | 1   | 0  | 4       | 2        | 0  | 0  | 2  | 3  | 0  | 0  | 5        | 0  | 0  | 0      | 0  | 0  | 0  | AT  |
| AZ  | 0  | 28  | 0  | 38 | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 12 | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 17 | 0      | 0  | 0  | 0  | AZ  |
| BA  | 1  | 0   | 2  | 0  | 310   | 0      | 3  | 1  | 0  | 0  | 10  | 12      | 0  | 0  | 2   | 0  | 2       | 1        | 0  | 1  | 3  | 3  | 0  | 0  | 6        | 0  | 0  | 0      | 0  | 0  | 0  | BA  |
| BE  | 0  | -0  | 1  | -0 | 0     | 78     | 0  | 0  | 1  | -0 | 5   | 66      | 0  | 0  | 3   | 0  | 47      | 20       | -0 | 0  | 0  | 0  | 1  | 0  | 1        | -0 | -0 | 0      | 1  | 0  | 0  | BE  |
| BG  | 2  | 0   | 1  | 0  | 13    | 0      | 92 | 2  | 0  | 0  | 4   | 5       | 0  | 0  | 1   | 0  | 1       | 0        | 0  | 11 | 1  | 2  | 0  | 0  | 2        | 0  | 1  | 0      | 0  | 0  | 1  | BG  |
| ΒY  | 0  | 0   | 0  | 0  | 1     | 1      | 1  | 37 | 0  | 0  | 3   | 10      | 1  | 3  | 0   | 3  | 1       | 2        | 0  | 0  | 0  | 1  | 0  | 0  | 0        | 0  | 1  | 6      | 0  | 1  | 1  | BY  |
| СН  | 0  | 0   | 2  | 0  | 1     | 1      | 0  | 0  | 36 | 0  | 4   | 28      | 0  | 0  | 2   | 0  | 15      | 1        | 0  | 0  | 0  | 0  | 0  | 0  | 6        | 0  | 0  | 0      | 0  | 0  | 0  | СН  |
| CY  | 0  | 1   | 0  | 0  | - 3   | 0      | 4  | 0  | 0  | 33 | 1   | -0      | 0  | 0  | 1   | 0  | 0       | 0        | 0  | 8  | 0  | 0  | 0  | 0  | 3<br>3   | 0  | 1  | 0      | 0  | 0  | 0  | CY  |
| C7  | 0  | 0   | 5  | 0  | 6     | 2      | 1  | 1  | 1  | 0  | 111 | 7/      | 0  | 0  | 1   | 0  | 6       | 3        | 0  | 0  | 1  | 1  | 0  | 0  | 1        | 0  | 0  | 0      | 0  | 0  | 0  | C7  |
|     | 0  | 0   | 2  | 0  | 1     | 2      | 0  | 1  | 2  | 0  | 10  | 144     | 1  | 1  | 1   | 0  | 14      | 0        | 0  | 0  | 0  | 1  | 0  | 0  | 1        | 0  | 0  | 1      | 0  | 0  | 0  |     |
|     | 0  | -0  | 0  | -0 | 1     | 2      | 0  | 1  | 2  | 0  | 10  | 244     | 20 | 1  | 1   | 1  | 14<br>2 | 9<br>1 E | 0  | 0  | 0  | 1  | 1  | 0  | 0        | 0  | 0  | 1      | 0  | 0  | 0  |     |
|     | -0 | -0  | 0  | -0 | 0     | о<br>О | 0  | 1  | 0  | -0 | 4   | 54<br>7 | 20 | 15 | 1   | 10 | о<br>О  | 212      | -0 | -0 | 0  | 0  | 1  | 0  | 0        | 0  | 0  | 2      | 0  | 0  | 0  |     |
|     | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 2  | 0  | 0  | 1   | 2       | 1  | 15 | 102 | 12 | 0       | с<br>С   | 0  | 0  | 0  | 0  | 0  | 0  | 1        | 0  | 0  | о<br>О | 0  | 2  | 0  |     |
| ES  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 1   | 3       | 0  | 0  | 103 | 0  | 0       | 2        | 0  | 0  | 0  | 0  | 0  | 0  | 1        | 0  | 0  | 0      | 0  | 0  | 0  | ES  |
| FI  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 1  | 0  | 0  | 1   | 3       | 0  | 2  | 0   | 21 | 0       | 1        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 1      | 0  | 0  | 0  | FI  |
| FR  | 0  | 0   | 0  | 0  | 1     | 5      | 0  | 0  | 2  | 0  | 3   | 22      | 0  | 0  | 11  | 0  | 57      | 10       | 0  | 0  | 0  | 0  | 1  | 0  | 3        | 0  | 0  | 0      | 0  | 0  | 0  | FR  |
| GB  | 0  | -0  | 0  | -0 | 0     | 1      | 0  | 0  | 0  | -0 | 1   | 7       | 0  | 0  | 2   | 0  | 5       | 98       | -0 | 0  | 0  | 0  | 4  | 1  | 0        | -0 | 0  | 0      | 0  | 0  | 0  | GB  |
| GE  | 0  | 18  | 0  | 10 | 0     | 0      | 1  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 48 | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 5  | 0      | 0  | 0  | 0  | GE  |
| GL  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 0      | 0  | 0  | 0  | GL  |
| GR  | 4  | 0   | 0  | 0  | 14    | 0      | 28 | 1  | 0  | 0  | 3   | 3       | 0  | 0  | 2   | 0  | 1       | 0        | 0  | 49 | 1  | 1  | 0  | 0  | 7        | 0  | 1  | 0      | 0  | 0  | 1  | GR  |
| HR  | 1  | 0   | 4  | 0  | 93    | 1      | 3  | 1  | 0  | 0  | 18  | 20      | 0  | 0  | 3   | 0  | 3       | 1        | 0  | 1  | 19 | 6  | 0  | 0  | 10       | 0  | 0  | 0      | 0  | 0  | 0  | HR  |
| ΗU  | 0  | 0   | 5  | 0  | 26    | 1      | 5  | 2  | 0  | 0  | 25  | 27      | 0  | 0  | 1   | 0  | 2       | 2        | 0  | 1  | 5  | 41 | 0  | 0  | 4        | 0  | 0  | 0      | 0  | 0  | 0  | HU  |
| IE  | 0  | 0   | 0  | 0  | 0     | 1      | 0  | 0  | 0  | -0 | 0   | 4       | 0  | 0  | 1   | 0  | 2       | 29       | -0 | 0  | 0  | 0  | 28 | 1  | 0        | -0 | 0  | 0      | 0  | 0  | 0  | IE  |
| IS  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 1        | 0  | 0  | 0  | 0  | 0  | 28 | 0        | 0  | 0  | 0      | 0  | 0  | 0  | IS  |
| IT  | 1  | 0   | 2  | 0  | 14    | 0      | 1  | 0  | 1  | 0  | 4   | 8       | 0  | 0  | 7   | 0  | 10      | 1        | 0  | 1  | 4  | 1  | 0  | 0  | 71       | 0  | 0  | 0      | 0  | 0  | 0  | IT  |
| KG  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | -0 | 0  | 0        | 56 | 18 | 0      | 0  | 0  | 0  | KG  |
| ΚZ  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 4  | 86 | 0      | 0  | 0  | 0  | ΚZ  |
| LT  | 0  | 0   | 0  | 0  | 1     | 1      | 0  | 11 | 0  | 0  | 3   | 13      | 1  | 4  | 0   | 4  | 1       | 4        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 24     | 0  | 2  | 0  | LT  |
| LU  | 0  | -0  | 1  | -0 | 1     | 25     | 0  | 0  | 1  | 0  | 8   | 85      | 0  | 0  | 2   | 0  | 46      | 13       | 0  | 0  | 0  | 0  | 1  | 0  | 1        | 0  | -0 | 0      | 12 | 0  | 0  | LU  |
| IV  | 0  | 0   | 0  | 0  | 0     | 1      | 0  | 6  | 0  | 0  | 2   | 9       | 1  | 6  | 0   | 7  | 1       | 3        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 12     | 0  | 8  | 0  | IV  |
| MD  | 0  | 0   | 0  | 0  | 6     | 0      | 8  | 7  | 0  | 0  | 5   | 8       | 0  | 1  | 1   | 1  | 1       | 1        | 0  | 1  | 0  | 2  | 0  | 0  | 1        | 0  | 2  | 1      | 0  | 0  | 18 | MD  |
| ME  | g  | 0   | 1  | 0  | 72    | 0      | 4  | 0  | 0  | 0  | 4   | 6       | 0  | 0  | 2   | 0  | 1       | 1        | 0  | 3  | 1  | 1  | 0  | 0  | 6        | 0  | 0  | 0      | 0  | 0  | 0  | MF  |
| MK  | 15 | 0   | 0  | 0  | 17    | 0      | 15 | 1  | 0  | 0  | 4   | 5       | 0  | 0  | 1   | 0  | 1       | 0        | 0  | 35 | 1  | 2  | 0  | 0  | х<br>З   | 0  | 0  | 0      | 0  | 0  | 0  | MK  |
| мт  | 10 | 0   | 0  | 0  | 15    | 1      | 2  | 0  | 0  | 0  | 2   | 1       | 0  | 0  | 13  | 0  | 0       | 1        | 0  | 33 | 1  | 1  | 0  | 0  | 3/<br>3/ | 0  | 0  | 0      | 0  | 0  | 0  | МТ  |
| NI  | 0  | 0   | 0  | 0  | 10    | 30     | 0  | 0  | 0  | 0  | 6   | ຊາ      | 1  | 1  | 20  | 0  | 24      | 24       | 0  | 0  | 0  | 0  | 1  | 0  | 0        | 0  | 0  | 1      | 0  | 0  | 0  | NI  |
|     | 0  | -0  | 0  | -0 | 0     | - 29   | 0  | 0  | 0  | -0 | 0   | 202     | 1  | 0  | 2   | 1  | 24      | 24       | -0 | 0  | 0  | 0  | 1  | 0  | 0        | -0 | 0  | 0      | 0  | 0  | 0  |     |
|     | 0  | 0   | 1  | 0  | 0     | 0      | 1  | 0  | 0  | 0  | 16  | 40      | 1  | 0  | 0   | 1  | 0       | 2        | 0  | 0  | 0  | 0  | 0  | 0  | 1        | 0  | 0  | 0      | 0  | 0  | 0  |     |
|     | 0  | 0   | 1  | 0  | <br>О | 2      | 1  | 5  | 0  | 0  | 10  | 42      | 1  | 2  | 64  | 1  | с<br>С  | 3<br>1   | 0  | 0  | 0  | 2  | 0  | 0  | 1        | 0  | 0  | 2      | 0  | 0  | 0  |     |
|     | 1  | 0   | 1  | 0  | 14    | 0      | 10 | 0  | 0  | 0  | 0   | 2       | 0  | 1  | 04  | 0  | 2       | 1        | 0  | 0  | 1  | 0  | 0  | 0  | 0        | 0  | 1  | 0      | 0  | 0  | 0  |     |
| RU  | 1  | 0   | 1  | 0  | 14    | 0      | 10 | 3  | 0  | 0  | 0   | 9       | 0  | 1  | 1   | 0  | 1       | 1        | 0  | 2  | 1  | 5  | 0  | 0  | 2        | 0  | 1  | 0      | 0  | 0  | 2  | RU  |
| RS  | 5  | 0   | 1  | 0  | 50    | 0      | 17 | 1  | 0  | 0  | 10  | 12      | 0  | 0  | 1   | 0  | 1       | 1        | 0  | 0  | 2  | 6  | 0  | 0  | 3        | 0  | 0  | 0      | 0  | 0  | 0  | R5  |
| RU  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 1  | 0  | 0  | 0   | 1       | 0  | 1  | 0   | 1  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 15 | 0      | 0  | 0  | 0  | RU  |
| SE  | 0  | 0   | 0  | 0  | 0     | 1      | 0  | 1  | 0  | 0  | 1   | 6       | 2  | 1  | 0   | 3  | 1       | 3        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 1      | 0  | 0  | 0  | SE  |
| SI  | 0  | 0   | 10 | 0  | 16    | 1      | 1  | 1  | 0  | 0  | 17  | 23      | 0  | 0  | 2   | 0  | 3       | 1        | 0  | 1  | 18 | 4  | 0  | 0  | 14       | 0  | 0  | 0      | 0  | 0  | 0  | SI  |
| SK  | 0  | 0   | 3  | 0  | 9     | 1      | 2  | 2  | 0  | 0  | 30  | 29      | 0  | 1  | 1   | 0  | 2       | 2        | 0  | 1  | 2  | 16 | 0  | 0  | 2        | 0  | 0  | 0      | 0  | 0  | 0  | SK  |
| ТJ  | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 5  | 9  | 0      | 0  | 0  | 0  | ТJ  |
| ТМ  | 0  | 3   | 0  | 2  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 1  | 32 | 0      | 0  | 0  | 0  | ТМ  |
| TR  | 0  | 5   | 0  | 0  | 2     | 0      | 4  | 0  | 0  | 2  | 1   | 1       | 0  | 0  | 0   | 0  | 0       | 0        | 1  | 3  | 0  | 0  | 0  | 0  | 1        | 0  | 1  | 0      | 0  | 0  | 0  | TR  |
| UA  | 0  | 0   | 0  | 0  | 3     | 0      | 3  | 10 | 0  | 0  | 3   | 7       | 0  | 2  | 0   | 1  | 1       | 1        | 0  | 1  | 0  | 1  | 0  | 0  | 1        | 0  | 5  | 1      | 0  | 0  | 2  | UA  |
| UZ  | 0  | 1   | 0  | 1  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 9  | 45 | 0      | 0  | 0  | 0  | UZ  |
| ATL | 0  | 0   | 0  | 0  | 0     | 0      | 0  | 0  | 0  | 0  | 0   | 1       | 0  | 0  | 4   | 0  | 1       | 2        | 0  | 0  | 0  | 0  | 0  | 1  | 0        | 0  | 0  | 0      | 0  | 0  | 0  | ATL |
| BAS | 0  | 0   | 0  | 0  | 0     | 1      | 0  | 2  | 0  | 0  | 2   | 15      | 3  | 3  | 0   | 8  | 1       | 6        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 0  | 0  | 2      | 0  | 1  | 0  | BAS |
| BLS | 0  | 2   | 0  | 1  | 3     | 0      | 8  | 3  | 0  | 0  | 2   | 3       | 0  | 1  | 0   | 0  | 0       | 0        | 4  | 3  | 0  | 1  | 0  | 0  | 1        | 0  | 4  | 0      | 0  | 0  | 1  | BLS |
| MED | 1  | 0   | 1  | 0  | 15    | 0      | 6  | 0  | 0  | 1  | 3   | 5       | 0  | 0  | 14  | 0  | 9       | 1        | 0  | 7  | 2  | 1  | 0  | 0  | 21       | 0  | 0  | 0      | 0  | 0  | 0  | MED |
| NOS | 0  | 0   | 0  | 0  | 0     | 2      | 0  | 0  | 0  | 0  | 1   | 11      | 1  | 0  | 1   | 0  | 5       | 21       | 0  | 0  | 0  | 0  | 1  | 1  | 0        | 0  | 0  | 0      | 0  | 0  | 0  | NOS |
| AST | 0  | 1   | 0  | 1  | 0     | 0      | 0  | 0  | 0  | 1  | 0   | 0       | 0  | 0  | 0   | 0  | 0       | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0        | 1  | 10 | 0      | 0  | 0  | 0  | AST |
| NOA | 0  | 0   | 0  | 0  | 3     | 0      | 1  | 0  | 0  | 0  | 1   | 1       | 0  | 0  | 10  | 0  | 2       | 0        | 0  | 2  | 0  | 0  | 0  | 0  | 5        | 0  | 0  | 0      | 0  | 0  | 0  | NOA |
| EXC | 0  | 1   | 0  | 0  | 3     | 1      | 2  | 2  | 0  | 0  | 2   | 7       | 0  | 1  | 4   | 1  | 3       | 3        | 0  | 1  | 0  | 1  | 0  | 0  | 2        | 2  | 21 | 0      | 0  | 0  | 0  | EXC |
| EU  | 0  | 0   | 1  | 0  | 5     | 3      | 4  | 1  | 0  | 0  | 8   | 26      | 1  | 1  | 16  | 2  | 11      | 10       | 0  | 2  | 1  | 2  | 1  | 0  | 6        | 0  | 0  | 1      | 0  | 0  | 0  | EU  |
| -   | AL | AM  | AT | ΑZ | BA    | BE     | BG | ΒY | СН | CY | CZ  | DE      | DK | EE | ES  | FI | FR      | GB       | GE | GR | HR | ΗU | IE | IS | IT       | KG | ΚZ | LT     | LU | LV | MD | -   |
|     |    |     |    |    |       |        |    |    |    |    |     |         |    |    |     |    |         |          |    |    |    |    |    |    |          |    |    |        |    |    |    |     |

Table C.9 Cont.: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of SO<sub>x</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | ME  | MK  | МΤ | NL     | NO     | ΡL  | РΤ | RO     | RS     | RU  | SE | SI | SK | ТJ | ТΜ | TR     | UA     | UZ | ATL | BAS | BLS    | MED | NOS    | AST | NOA    | BIC | DMS    | VOL | EXC | EU  |          |
|----------|-----|-----|----|--------|--------|-----|----|--------|--------|-----|----|----|----|----|----|--------|--------|----|-----|-----|--------|-----|--------|-----|--------|-----|--------|-----|-----|-----|----------|
| AL       | 23  | 43  | 0  | 0      | 0      | 14  | 0  | 5      | 105    | 3   | 0  | 0  | 1  | 0  | 0  | 16     | 10     | 0  | 0   | 0   | 0      | 23  | 0      | 1   | 17     | 11  | 5      | 36  | 388 | 66  | AL       |
| AM       | 0   | 0   | 0  | 0      | 0      | 0   | 0  | 0      | 1      | 5   | 0  | 0  | 0  | 0  | 0  | 78     | 3      | 0  | 0   | 0   | 0      | 1   | 0      | 143 | 4      | 18  | 0      | 7   | 331 | 2   | AM       |
| AT       | 1   | 0   | 0  | 1      | 0      | 26  | 0  | 3      | 15     | 1   | 0  | 3  | 3  | 0  | 0  | 2      | 4      | 0  | 1   | 0   | 0      | 3   | 0      | 0   | 3      | 5   | 2      | 4   | 174 | 142 | AT       |
| AZ       | 0   | 0   | 0  | 0      | 0      | 1   | 0  | 0      | 1      | 23  | 0  | 0  | 0  | 0  | 0  | 37     | 10     | 0  | 0   | 0   | 0      | 0   | 0      | 133 | 2      | 10  | 0      | 4   | 169 | 2   | AZ       |
| BA       | 16  | 2   | 0  | 0      | 0      | 27  | 0  | 6      | 164    | 3   | 0  | 0  | 3  | 0  | 0  | 7      | 11     | 0  | 0   | 0   | 0      | 8   | 0      | 0   | 11     | 7   | 2      | 13  | 598 | 83  | BA       |
| RF       | -0  | 0   | 0  | 12     | 0      | 10  | 0  | 0      | 1      | 1   | 0  | 0  | 0  | -0 | _0 | 0      | 1      | -0 | 7   | 0   | 0      | 1   | 6      | -0  | 1      | 5   | 14     | 1   | 251 | 246 | RF       |
| BG       | 5   | 11  | 0  | 0      | 0      | 21  | 0  | 26     | 68     | 15  | 0  | 0  | 2  | 0  | 0  | 13     | 57     | 0  | 0   | 0   | 1      | 8   | 0      | 1   | 2      | 0   | 24     | 0   | 386 | 160 | BC       |
|          | 0   | 11  | 0  | 1      | 0      | 56  | 0  | 20     | 4      | 17  | 1  | 0  | 1  | 0  | 0  | -13    | 24     | 0  | 0   | 1   | -      | 0   | 0      | 1   | 1      | 5   | 2      | 1   | 215 | 109 |          |
|          | 0   | 0   | 0  | 1      | 0      | 50  | 0  | 2      | 4      | 47  | 1  | 0  | 1  | 0  | 0  | 4      | 24     | 0  | 1   | 1   | 0      | 0   | 0      | 1   | 1      | 5   | ່<br>ວ | 1   | 106 | 93  |          |
| СП       | 1   | 0   | 0  | 1      | 0      | 5   | 0  | 0      | 2      | 0   | 0  | 0  | 0  | 0  | 0  | 1      | 17     | 0  | 1   | 0   | 0      | 2   | 0      | 0   | 24     | 4   | 10     | 2   | 100 | 00  | СП       |
| CY<br>C7 | 1   | 3   | 0  | 0      | 0      | 2   | 0  | 2      | 9      | 1   | 0  | 0  | 0  | 0  | 0  | 155    | 17     | 0  | 0   | 0   | 3      | 55  | 0      | 80  | 34     | 24  | 18     | 27  | 850 | 50  | CY<br>C7 |
| CZ       | 0   | 0   | 0  | 1      | 0      | 81  | 0  | 4      | 18     | 3   | 0  | 1  | 6  | 0  | 0  | 2      | (      | 0  | 1   | 0   | 0      | 1   | 1      | 0   | 2      | 5   | 4      | 2   | 344 | 305 | CZ       |
| DE       | 0   | 0   | 0  | 6      | 0      | 34  | 0  | 1      | 3      | 3   | 0  | 0  | 1  | 0  | 0  | 1      | 2      | 0  | 2   | 0   | 0      | 1   | 2      | 0   | 1      | 6   | 8      | 1   | 258 | 245 | DE       |
| DK       | 0   | 0   | -0 | 3      | 2      | 21  | 0  | 0      | 0      | 9   | 2  | 0  | 0  | -0 | 0  | 0      | 2      | 0  | 3   | 2   | 0      | 0   | 3      | 0   | 0      | 5   | 15     | 0   | 124 | 110 | DK       |
| EE       | 0   | 0   | 0  | 0      | 1      | 18  | 0  | 0      | 1      | 32  | 3  | 0  | 0  | 0  | 0  | 1      | 4      | 0  | 1   | 2   | 0      | 0   | 0      | 0   | 0      | 3   | 6      | 0   | 108 | 67  | EE       |
| ES       | 0   | 0   | 0  | 0      | 0      | 1   | 8  | 0      | 1      | 0   | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 14  | 0   | 0      | 30  | 0      | 0   | 20     | 10  | 11     | 1   | 127 | 125 | ES       |
| FI       | 0   | 0   | 0  | 0      | 1      | 6   | 0  | 0      | 0      | 29  | 5  | 0  | 0  | 0  | 0  | 0      | 1      | 0  | 1   | 1   | 0      | 0   | 0      | 0   | 0      | 3   | 7      | 0   | 74  | 41  | FI       |
| FR       | 0   | 0   | 0  | 2      | 0      | 6   | 0  | 0      | 2      | 1   | 0  | 0  | 0  | 0  | 0  | 0      | 1      | 0  | 10  | 0   | 0      | 7   | 2      | 0   | 3      | 6   | 13     | 2   | 129 | 123 | FR       |
| GB       | 0   | 0   | 0  | 1      | 0      | 4   | 0  | 0      | 0      | 1   | 0  | 0  | 0  | -0 | 0  | 0      | 1      | 0  | 14  | 0   | 0      | 0   | 3      | 0   | 0      | 6   | 22     | 0   | 128 | 125 | GB       |
| GE       | 0   | 0   | 0  | 0      | 0      | 1   | 0  | 1      | 1      | 13  | 0  | 0  | 0  | 0  | 0  | 51     | 9      | 0  | 0   | 0   | 3      | 1   | 0      | 40  | 2      | 7   | 0      | 5   | 160 | 4   | GE       |
| GL       | 0   | 0   | 0  | 0      | 0      | 0   | 0  | 0      | 0      | 0   | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 0   | 0   | 0      | 0   | 0      | 0   | 0      | 6   | 2      | 0   | 0   | 0   | GL       |
| GR       | 5   | 22  | 0  | 0      | 0      | 12  | 0  | 9      | 48     | 9   | 0  | 0  | 1  | 0  | 0  | 86     | 32     | 0  | 0   | 0   | 2      | 42  | 0      | 3   | 19     | 12  | 7      | 40  | 343 | 118 | GR       |
| HR       | 5   | 2   | 0  | 1      | 0      | 37  | 0  | 8      | 117    | 3   | 0  | 3  | 5  | 0  | 0  | 7      | 12     | 0  | 1   | 0   | 0      | 16  | 0      | 0   | 10     | 7   | 3      | 12  | 384 | 142 | HR       |
| ΗU       | 3   | 2   | 0  | 1      | 0      | 76  | 0  | 25     | 79     | 5   | 0  | 2  | 15 | 0  | 0  | 8      | 22     | 0  | 1   | 0   | 0      | 5   | 0      | 0   | 6      | 8   | 2      | 6   | 388 | 240 | ΗU       |
| IE       | 0   | 0   | 0  | 1      | 0      | 3   | 0  | 0      | 0      | 1   | 0  | 0  | 0  | -0 | 0  | 0      | 1      | 0  | 14  | 0   | 0      | 0   | 1      | 0   | 0      | 8   | 28     | 0   | 73  | 70  | IE       |
| IS       | 0   | 0   | -0 | 0      | 0      | 0   | 0  | 0      | 0      | 0   | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 2   | 0   | 0      | 0   | 0      | 0   | 0      | 5   | 15     | 0   | 31  | 3   | IS       |
| IT.      | 2   | 1   | 0  | 0      | 0      | 10  | 0  | 2      | 18     | 1   | 0  | 2  | 1  | 0  | 0  | 5      | °<br>3 | 0  | 1   | 0   | 0      | 45  | 0      | 0   | 22     | 7   |        | 43  | 172 | 127 | IT       |
| ĸc       | 0   | 0   | 0  | 0      | 0      | 10  | _0 | 0      | 10     | 2   | 0  | _0 | 0  | 5  | 0  | 1      | 0      | 13 | 0   | 0   | 0      | 0   | 0      | 37  | 0      | 16  | 0      | 2   | 08  | 0   | ĸc       |
| K7       | 0   | 0   | 0  | 0      | 0      | 1   | -0 | 0      | 0      | 65  | 0  | -0 | 0  | 0  | 0  | 7<br>2 | 11     | 1  | 0   | 0   | 0      | 0   | 0      | 22  | 0      | 10  | 0      | - 1 | 176 | 3   | K7       |
|          | 0   | 0   | 0  | 1      | 1      | E 4 | 0  | 1      | 2      | 21  | 2  | 0  | 1  | 0  | 0  | 1      | 10     | 0  | 1   | 1   | 0      | 0   | 1      | 25  | 0      | 19  | 6      | 1   | 170 | 110 | 17       |
|          | 0   | 0   | 0  | 1      | 1      | 12  | 0  | 1      | 2      | 1   | 2  | 0  | 1  | 0  | 0  | 1      | 12     | 0  | -   | 1   | 0      | 1   | 1      | 0   | 1      | 0   | 0      | 1   | 224 | 217 |          |
|          | 0   | 0   | 0  | 1      | 1      | 13  | 0  | 0      | 2      | 1   | 0  | 0  | 1  | 0  | 0  | 0      | 1      | 0  | 5   | 0   | 0      | 1   | 2      | 0   | 1      | 5   | 9      | 1   | 224 | 217 |          |
| LV       | 0   | 0   | 0  | 1      | 1      | 28  | 0  | 1      | 1      | 29  | 2  | 0  | 0  | 0  | 0  | 1      | 1      | 0  | 1   | 1   | 0      | 0   | 1      | 0   | 0      | 4   | 6      | 0   | 129 | 82  | LV       |
| MD       | 1   | 1   | 0  | 0      | 0      | 52  | 0  | 25     | 16     | 31  | 0  | 0  | 2  | 0  | 0  | 26     | 102    | 0  | 0   | 0   | 4      | 2   | 0      | 1   | 3      | (   | 2      | 4   | 324 | 112 | MD       |
| ME       | 136 | 1   | 0  | 0      | 0      | 16  | 0  | 4      | 123    | 2   | 0  | 0  | 2  | 0  | 0  | 11     | 9      | 0  | 0   | 0   | 0      | 11  | 0      | 0   | 13     | 9   | 3      | 19  | 422 | 52  | ME       |
| MK       | 8   | 130 | 0  | 0      | 0      | 17  | 0  | 9      | 112    | 4   | 0  | 0  | 2  | 0  | 0  | 31     | 16     | 0  | 0   | 0   | 1      | 9   | 0      | 1   | 12     | 10  | 2      | 18  | 431 | 96  | MK       |
| MT       | 3   | 1   | 8  | 0      | 0      | 6   | 1  | 2      | 18     | 1   | 0  | 0  | 1  | 0  | 0  | 11     | 3      | 0  | 2   | 0   | 0      | 177 | 0      | 0   | 84     | 19  | 28     | 81  | 143 | 90  | MT       |
| NL       | 0   | 0   | 0  | 35     | 0      | 16  | 0  | 0      | 1      | 3   | 0  | 0  | 0  | -0 | 0  | 0      | 1      | -0 | 6   | 0   | 0      | 0   | 8      | -0  | 0      | 5   | 16     | 1   | 240 | 233 | NL       |
| NO       | 0   | 0   | 0  | 0      | 6      | 3   | 0  | 0      | 0      | 8   | 2  | 0  | 0  | 0  | 0  | 0      | 1      | 0  | 3   | 0   | 0      | 0   | 1      | 0   | 0      | 5   | 14     | 0   | 29  | 13  | NO       |
| ΡL       | 0   | 0   | 0  | 1      | 0      | 186 | 0  | 3      | 9      | 12  | 1  | 0  | 4  | 0  | 0  | 2      | 14     | 0  | 1   | 1   | 0      | 1   | 1      | 0   | 1      | 6   | 5      | 2   | 320 | 272 | ΡL       |
| ΡT       | 0   | 0   | 0  | 0      | 0      | 1   | 44 | 0      | 0      | 0   | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0  | 37  | 0   | 0      | 10  | 0      | 0   | 14     | 12  | 19     | 1   | 117 | 117 | ΡT       |
| RO       | 4   | 4   | 0  | 0      | 0      | 41  | 0  | 81     | 50     | 14  | 0  | 0  | 4  | 0  | 0  | 20     | 53     | 0  | 0   | 0   | 2      | 3   | 0      | 0   | 5      | 8   | 1      | 6   | 338 | 173 | RO       |
| RS       | 22  | 23  | 0  | 0      | 0      | 37  | 0  | 24     | 300    | 6   | 0  | 0  | 5  | 0  | 0  | 16     | 23     | 0  | 0   | 0   | 1      | 6   | 0      | 0   | 9      | 9   | 2      | 13  | 582 | 130 | RS       |
| RU       | 0   | 0   | 0  | 0      | 0      | 4   | 0  | 0      | 0      | 109 | 0  | 0  | 0  | 0  | 0  | 2      | 13     | 0  | 0   | 0   | 0      | 0   | 0      | 2   | 0      | 46  | 4      | 0   | 151 | 9   | RU       |
| SE       | 0   | 0   | 0  | 1      | 3      | 7   | 0  | 0      | 0      | 10  | 7  | 0  | 0  | 0  | 0  | 0      | 1      | 0  | 2   | 1   | 0      | 0   | 1      | 0   | 0      | 3   | 8      | 0   | 49  | 33  | SE       |
| SI       | 1   | 0   | 0  | 1      | 0      | 28  | 0  | 5      | 36     | 2   | 0  | 23 | 3  | 0  | 0  | 4      | 7      | 0  | 0   | 0   | 0      | 13  | 0      | 0   | 8      | 5   | 3      | 8   | 223 | 154 | SI       |
| SK       | 1   | 1   | 0  | 1      | 0      | 106 | 0  | 12     | 30     | 4   | 0  | 1  | 34 | 0  | 0  | 5      | 18     | 0  | 0   | 0   | 0      | 3   | 0      | 0   | 3      | 6   | 2      | 4   | 317 | 246 | SK       |
| τJ       | 0   | 0   | 0  | 0      | 0      | 0   | 0  | 0      | 0      | 4   | 0  | 0  | 0  | 39 | 1  | 6      | 1      | 8  | 0   | 0   | 0      | 0   | 0      | 60  | 0      | 25  | 0      | 2   | 73  | 0   | τJ       |
| тм       | 0   | 0   | 0  | 0      | 0      | 1   | 0  | 0      | 0      | 30  | 0  | 0  | 0  | 2  | 6  | 13     | 11     | 3  | 0   | 0   | 0      | 0   | 0      | 122 | 1      | 23  | 0      | 3   | 105 | 2   | тм       |
| TR       | 1   | 1   | 0  | 0      | 0      | 3   | 0  | 3      | 7      | 10  | 0  | 0  | 0  | 0  | 0  | 498    | 18     | 0  | 0   | 0   | 4      | 13  | 0      | 81  | 12     | 20  | 3      | 15  | 563 | 18  | TR       |
|          | 1   | 1   | 0  | 0      | 0      | 12  | 0  | 2<br>0 | ,<br>0 | 52  | 0  | 0  | 2  | 0  | 0  | 12     | 125    | 0  | 0   | 0   | ד<br>ר | 20  | 0      | 2   | 2      | 20  | 2      | 10  | 310 | 76  |          |
|          | 0   | 0   | 0  | 0      | 0      | 1   | 0  | 0      | 1      | 36  | 0  | 0  | 0  | 6  | 2  | 20     | 10     | 17 | 0   | 0   |        | 2   | 0      | 58  | 1      | 10  | -      | 2   | 140 | 2   |          |
|          | 0   | 0   | 0  | 0      | 0      | 1   | 1  | 0      | 1      | 50  | 0  | 0  | 0  | 0  | 2  | 0      | 10     | 11 | 15  | 0   | 0      | 1   | 0      | 50  | 1      | 19  | 24     | 2   | 140 | 10  |          |
|          | 0   | 0   | 0  | U<br>1 | U<br>1 | 1   | 1  | U      | 0      | 0   | U  | U  | 0  | 0  | 0  | 0      | 0      | U  | 12  | 0   | U      | 1   | U<br>1 | 0   | 3      | 32  | 34     | 0   | 21  | 12  |          |
| BA2      | 0   | 0   | 0  | 1      | 1      | 21  | 0  | 0      | 0      | 10  | 6  | 0  | 0  | 0  | 0  | 0      | 3      | 0  | 1   | 3   | 0      | 0   | 1      | 0   | U<br>- | 4   | 10     | 0   | 95  | /1  | BA2      |
| BLS      | 1   | 1   | 0  | 0      | 0      | 15  | 0  | 10     | 11     | 49  | 0  | 0  | 1  | 0  | 0  | 111    | 101    | 0  | 0   | 0   | 23     | 6   | 0      | 7   | 5      | 6   | 1      | 6   | 337 | 45  | RES      |
| MED      | 4   | 3   | 1  | 0      | 0      | 8   | 1  | 3      | 22     | 4   | 0  | 0  | 1  | 0  | 0  | 162    | 12     | 0  | 3   | 0   | 1      | 123 | 0      | 24  | 61     | 19  | 23     | 78  | 308 | 83  | MED      |
| NOS      | 0   | 0   | 0  | 2      | 2      | 7   | 0  | 0      | 0      | 3   | 1  | 0  | 0  | 0  | 0  | 0      | 1      | 0  | 8   | 0   | 0      | 0   | 5      | 0   | 0      | 5   | 25     | 0   | 62  | 55  | NOS      |
| AST      | 0   | 0   | 0  | 0      | 0      | 0   | 0  | 0      | 1      | 7   | 0  | 0  | 0  | 0  | 1  | 45     | 3      | 0  | 0   | 0   | 0      | 2   | 0      | 323 | 4      | 120 | 1      | 5   | 73  | 2   | AST      |
| NOA      | 1   | 1   | 0  | 0      | 0      | 2   | 2  | 1      | 5      | 1   | 0  | 0  | 0  | 0  | 0  | 25     | 2      | 0  | 8   | 0   | 0      | 35  | 0      | 7   | 172    | 70  | 11     | 28  | 66  | 28  | NOA      |
| EXC      | 1   | 1   | 0  | 0      | 0      | 11  | 0  | 2      | 6      | 59  | 0  | 0  | 1  | 1  | 0  | 26     | 15     | 1  | 2   | 0   | 0      | 3   | 0      | 14  | 2      | 25  | 4      | 3   | 183 | 43  | EXC      |
| EU       | 1   | 1   | 0  | 2      | 1      | 29  | 2  | 7      | 13     | 8   | 1  | 0  | 2  | 0  | 0  | 7      | 9      | 0  | 6   | 0   | 0      | 10  | 1      | 0   | 6      | 6   | 9      | 6   | 187 | 140 | EU       |
|          | ME  | ΜК  | ΜТ | NL     | NO     | PL  | ΡТ | RO     | RS     | RU  | SE | SI | SK | ТJ | тм | TR     | UA     | UΖ | ATL | BAS | BLS    | MED | NOS    | AST | NOA    | BIC | DMS    | VOL | EXC | ΕU  |          |

Table C.10: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of NO<sub>x</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL | АМ | AT       | AZ  | BA | BE     | BG     | BY | СН  | CY | CZ       | DE      | DK | EE | ES     | FI     | FR     | GB       | GE     | GR     | HR       | нu        | IE     | IS | ΙТ       | KG | ΚZ | LT     | LU | LV | MD     |     |
|-----|----|----|----------|-----|----|--------|--------|----|-----|----|----------|---------|----|----|--------|--------|--------|----------|--------|--------|----------|-----------|--------|----|----------|----|----|--------|----|----|--------|-----|
| AL  | 60 | 0  | 1        | 0   | 3  | 0      | 2      | 0  | 0   | 0  | 1        | 2       | 0  | 0  | 1      | 0      | 1      | 0        | 0      | 12     | 2        | 2         | 0      | 0  | 11       | 0  | 0  | 0      | 0  | 0  | 0      | AL  |
| AM  | 0  | 62 | 0        | 27  | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 9      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 1  | 0      | 0  | 0  | 0      | AM  |
| AT  | 0  | 0  | 120      | 0   | 1  | 3      | 0      | 0  | 10  | 0  | 21       | 95      | 0  | 0  | 1      | 0      | 11     | 4        | 0      | 0      | 7        | 11        | 0      | 0  | 29       | 0  | 0  | 0      | 0  | 0  | 0      | AT  |
| AZ  | 0  | 9  | 0        | 107 | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 24     | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 3  | 0      | 0  | 0  | 0      | AZ  |
| BA  | 1  | 0  | 6        | 0   | 41 | 0      | 1      | 0  | 0   | 0  | 5        | 9       | 0  | 0  | 1      | 0      | 2      | 1        | 0      | 1      | 11       | 9         | 0      | 0  | 9        | 0  | 0  | 0      | 0  | 0  | 0      | BA  |
| BE  | 0  | 0  | 3        | 0   | 0  | 52     | 0      | 1  | 5   | 0  | 4        | 147     | 3  | 0  | 3      | 1      | 131    | 70       | 0      | 0      | 0        | 0         | 4      | 0  | 3        | 0  | 0  | 1      | 7  | 0  | 0      | BE  |
| BG  | 1  | 0  | 2        | 0   | 1  | 0      | 57     | 1  | 0   | 0  | 1        | 4       | 0  | 0  | 1      | 0      | 1      | 1        | 0      | 10     | 1        | 3         | 0      | 0  | 2        | 0  | 0  | 0      | 0  | 0  | 1      | BG  |
| ΒY  | 0  | 0  | 0        | 0   | 0  | 1      | 1      | 35 | 0   | 0  | 1        | 10      | 1  | 1  | 0      | 2      | 1      | 2        | 0      | 0      | 0        | 1         | 0      | 0  | 1        | 0  | 0  | 8      | 0  | 3  | 1      | ΒY  |
| CH  | 0  | 0  | 15       | 0   | 0  | 4      | 0      | 0  | 169 | 0  | 3        | 103     | 0  | 0  | 1      | 0      | 55     | 5        | 0      | 0      | 0        | 0         | 0      | 0  | 38       | 0  | 0  | 0      | 1  | 0  | 0      | CH  |
| CY  | 0  | 0  | 0        | 0   | 0  | 0      | 1      | 0  | 0   | 16 | 0        | 0       | 0  | 0  | 1      | 0      | 1      | 0        | 0      | 13     | 0        | 0         | 0      | 0  | 2        | 0  | 0  | 0      | 0  | 0  | 0      | CY  |
| CZ  | 0  | 0  | 34       | 0   | 1  | 4      | 0      | 1  | 4   | 0  | 97       | 112     | 1  | 0  | 1      | 0      | 16     | 5        | 0      | 0      | 3        | 14        | 0      | 0  | 5        | 0  | 0  | 0      | 1  | 0  | 0      | CZ  |
| DE  | 0  | 0  | 19       | 0   | 0  | 20     | 0      | 1  | 11  | 0  | 16       | 277     | 7  | 0  | 2      | 0      | 44     | 25       | 0      | 0      | 0        | 1         | 1      | 0  | 5        | 0  | 0  | 1      | 3  | 0  | 0      | DE  |
| DK  | 0  | 0  | 1        | 0   | 0  | 12     | 0      | 1  | 0   | 0  | 3        | 108     | 69 | 1  | 1      | 1      | 12     | 33       | 0      | 0      | 0        | 0         | 2      | 0  | 0        | 0  | 0  | 1      | 0  | 1  | 0      | DK  |
| EE  | 0  | 0  | 0        | 0   | 0  | 1      | 0      | 4  | 0   | 0  | 0        | 6       | 2  | 10 | 0      | 5      | 1      | 3        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 0  | 3      | 0  | 4  | 0      | EE  |
| ES  | 0  | 0  | 0        | 0   | 0  | 1      | 0      | 0  | 0   | 0  | 0        | 3       | 0  | 0  | 117    | 0      | 11     | 2        | 0      | 0      | 0        | 0         | 0      | 0  | 2        | 0  | 0  | 0      | 0  | 0  | 0      | ES  |
| FI  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 1  | 0   | 0  | 0        | 2       | 1  | 1  | 0      | 9      | 0      | 1        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 0  | 0      | 0  | 0  | 0      | FI  |
| FR  | 0  | 0  | 3        | 0   | 0  | 18     | 0      | 0  | 11  | 0  | 3        | 62      | 1  | 0  | 8      | 0      | 168    | 33       | 0      | 0      | 0        | 0         | 2      | 0  | 9        | 0  | 0  | 0      | 3  | 0  | 0      | FR  |
| GB  | 0  | 0  | 0        | 0   | 0  | 6      | 0      | 0  | 0   | 0  | 1        | 22      | 2  | 0  | 2      | 0      | 22     | 139      | 0      | 0      | 0        | 0         | 12     | 0  | 1        | 0  | 0  | 0      | 1  | 0  | 0      | GB  |
| GE  | 0  | 5  | 0        | 16  | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 43     | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 1  | 0      | 0  | 0  | 0      | GE  |
| GL  | 0  | 0  | 0        | 0   | 1  | 0      | 0      | 0  | 0   | 0  | 0        | 1       | 0  | 0  | 1      | 0      | 1      | 0        | 0      | 0      | 0        | 1         | 0      | 0  | 0        | 0  | 0  | 0      | 0  | 0  | 0      | GL  |
| GR  | 2  | 0  | 0<br>25  | 0   | 17 | 1      | 9<br>1 | 0  | 1   | 0  | 12       | 1       | 0  | 0  | 1      | 0      | 1      | 1        | 0      | 45     | 0<br>E0  | 1<br>22   | 0      | 0  | 5<br>20  | 0  | 0  | 0      | 0  | 0  | 0      | GR  |
|     | 0  | 0  | 25<br>40 | 0   | 11 | 1      | 1      | 1  | 1   | 0  | 13<br>27 | 22      | 1  | 0  | 1      | 0      | 5<br>6 | 1        | 0      | 1      | 20<br>25 | 23<br>117 | 0      | 0  | 32<br>17 | 0  | 0  | 0      | 0  | 0  | 0      |     |
| IE  | 0  | 0  | 40       | 0   | 0  | 3      | 2      | 0  | 2   | 0  | 21       | 10      | 1  | 0  | 1      | 0      | 8      | 26<br>86 | 0      | 0      | 25       | 117       | 63     | 0  | 11       | 0  | 0  | 0      | 0  | 0  | 0      | IE  |
| IS  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 10      | 0  | 0  | 0      | 0      | 0      | 1        | 0      | 0      | 0        | 0         | 05     | -0 | 0        | 0  | 0  | 0      | 0  | 0  | 0      | IS  |
| IT  | 0  | 0  | 11       | 0   | 1  | 1      | 0      | 0  | 4   | 0  | 2        | 11      | 0  | 0  | 4      | 0      | 12     | 1        | 0      | 1      | 6        | 2         | 0      | 0  | 355      | 0  | 0  | 0      | 0  | 0  | 0      | IT  |
| KG  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 22 | 4  | 0      | 0  | 0  | 0      | KG  |
| K7  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 1  | 20 | 0      | 0  | 0  | 0      | K7  |
| LT  | 0  | 0  | 1        | 0   | 0  | 1      | 0      | 15 | 0   | 0  | 2        | 15      | 3  | 2  | 0      | 3      | 2      | 4        | 0      | 0      | 0        | 1         | 0      | 0  | 1        | 0  | 0  | 28     | 0  | 8  | 1      | LT  |
| LU  | 0  | 0  | 6        | 0   | 0  | 59     | 0      | 0  | 5   | 0  | 7        | 212     | 1  | 0  | 2      | 0      | 133    | 35       | 0      | 0      | 0        | 0         | 2      | 0  | 4        | 0  | 0  | 1      | 19 | 0  | 0      | LU  |
| LV  | 0  | 0  | 0        | 0   | 0  | 1      | 0      | 8  | 0   | 0  | 1        | 8       | 3  | 3  | 0      | 3      | 1      | 4        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 0  | 11     | 0  | 11 | 0      | LV  |
| MD  | 0  | 0  | 2        | 0   | 1  | 0      | 5      | 4  | 0   | 0  | 2        | 7       | 0  | 0  | 0      | 1      | 1      | 1        | 0      | 1      | 1        | 3         | 0      | 0  | 2        | 0  | 0  | 1      | 0  | 0  | 26     | MD  |
| ME  | 6  | 0  | 1        | 0   | 7  | 0      | 1      | 0  | 0   | 0  | 1        | 1       | 0  | -0 | 1      | -0     | 1      | 0        | 0      | 2      | 2        | 1         | 0      | 0  | 6        | 0  | 0  | -0     | 0  | -0 | 0      | ME  |
| MK  | 6  | 0  | 1        | 0   | 1  | 0      | 6      | 0  | 0   | 0  | 1        | 2       | 0  | 0  | 1      | 0      | 1      | 0        | 0      | 26     | 1        | 2         | 0      | 0  | 3        | 0  | 0  | 0      | 0  | 0  | 0      | MK  |
| MT  | 0  | 0  | 0        | 0   | 1  | 0      | 0      | 0  | 0   | 0  | 0        | 1       | 0  | -0 | 6      | 0      | 6      | 1        | 0      | 2      | 1        | 1         | 0      | 0  | 22       | 0  | 0  | 0      | 0  | -0 | 0      | MT  |
| NL  | 0  | 0  | 3        | 0   | 0  | 54     | 0      | 1  | 2   | 0  | 6        | 199     | 9  | 0  | 3      | 1      | 78     | 93       | 0      | 0      | 0        | 1         | 5      | 0  | 2        | 0  | 0  | 1      | 3  | 1  | 0      | NL  |
| NO  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 3       | 1  | 0  | 0      | 0      | 1      | 2        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 0  | 0      | 0  | 0  | 0      | NO  |
| PL  | 0  | 0  | 3        | 0   | 0  | 2      | 0      | 6  | 1   | 0  | 11       | 47      | 4  | 1  | 0      | 1      | 5      | 4        | 0      | 0      | 1        | 4         | 0      | 0  | 2        | 0  | 0  | 3      | 0  | 1  | 0      | PL  |
| ΡT  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 1       | 0  | 0  | 54     | 0      | 3      | 1        | 0      | 0      | 0        | 0         | 0      | 0  | 1        | 0  | 0  | 0      | 0  | 0  | 0      | ΡT  |
| RO  | 0  | 0  | 4        | 0   | 2  | 1      | 11     | 2  | 1   | 0  | 4        | 10      | 0  | 0  | 1      | 0      | 2      | 1        | 0      | 1      | 2        | 14        | 0      | 0  | 3        | 0  | 0  | 0      | 0  | 0  | 3      | RO  |
| RS  | 3  | 0  | 10       | 0   | 11 | 1      | 8      | 1  | 1   | 0  | 8        | 14      | 0  | 0  | 1      | 0      | 2      | 1        | 0      | 6      | 9        | 24        | 0      | 0  | 6        | 0  | 0  | 0      | 0  | 0  | 0      | RS  |
| RU  | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 1  | 0   | 0  | 0        | 1       | 0  | 0  | 0      | 0      | 0      | 0        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 3  | 0      | 0  | 0  | 0      | RU  |
| SE  | 0  | 0  | 0        | 0   | 0  | 1      | 0      | 0  | 0   | 0  | 0        | 9       | 5  | 0  | 0      | 1      | 1      | 3        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 0  | 0      | 0  | 0  | 0      | SE  |
| SI  | 0  | 0  | 69       | 0   | 3  | 2      | 1      | 0  | 2   | 0  | 14       | 37      | 0  | 0  | 1      | 0      | 5      | 2        | 0      | 0      | 38       | 14        | 0      | 0  | 99       | 0  | 0  | 0      | 0  | 0  | 0      | SI  |
| SK  | 0  | 0  | 22       | 0   | 2  | 1      | 1      | 1  | 2   | 0  | 24       | 28      | 0  | 0  | 1      | 0      | 5      | 2        | 0      | 1      | 5        | 44        | 0      | 0  | (        | 0  | 0  | 0      | 0  | 0  | 0      | SK  |
|     | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 3  | 2  | 0      | 0  | 0  | 0      |     |
|     | 0  | 1  | 0        | 1   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 1       | 0  | 0  | 0      | 0      | 0      | 0        | 0      | 0      | 0        | 0         | 0      | 0  | 1        | 0  | 1  | 0      | 0  | 0  | 0      |     |
|     | 0  | 1  | 1        | 1   | 0  | 0      | 2      | 6  | 0   | 0  | 1        | L<br>E  | 0  | 0  | 0      | 1      | 1      | 1        | 0      | د<br>0 | 0        | 0         | 0      | 0  | 1        | 0  | 1  | 1      | 0  | 0  | 4      |     |
|     | 0  | 0  | 1        | 0   | 0  | 0      | 2      | 0  | 0   | 0  | 1        | 5<br>0  | 0  | 0  | 0      | 1      | 1      | 1        | 0      | 0      | 0        | 2         | 0      | 0  | 1        | 0  | 12 | 1      | 0  | 0  | 4      |     |
|     | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 1       | 0  | 0  | 2      | 0      | 2      | 3        | 0      | 0      | 0        | 0         | 1      | 0  | 0        | 0  | 12 | 0      | 0  | 0  | 0      |     |
| RAS | 0  | 0  | 0        | 0   | 0  | 0<br>2 | 0      | 1  | 0   | 0  | 1        | 28      | 10 | 1  | 2<br>0 | 2      | 2      | 2        | 0      | 0      | 0        | 0         | 1      | 0  | 0        | 0  | 0  | 2      | 0  | 1  | 0      | RAS |
| BIS | 0  | 0  | 0        | 0   | 0  | о<br>О | 0<br>२ | 1  | 0   | 0  | 1        | 20<br>1 | 10 | 1  | 0      | ∠<br>∩ | э<br>0 | 0        | 0<br>२ | 2      | n        | 0         | L<br>L | 0  | 1        | 0  | 1  | ∠<br>∩ | n  | 0  | 1      | BIS |
| MED | 1  | n  | 1        | n   | 1  | n      | 1      | 0  | n   | n  | n        | 1       | n  | n  | 7      | n      | 6      | 1        | 0      | 2<br>6 | 1        | n         | n      | n  | 21       | n  | 0  | n      | n  | 0  | U<br>L | MED |
| NOS | 0  | 0  | 0        | 0   | 0  | 6      | 0      | 0  | 0   | 0  | 1        | 35      | 6  | 0  | 1      | 0      | 19     | 36       | 0      | 0      | 0        | 0         | 3      | 0  | 0        | 0  | 0  | 0      | 0  | n  | 0      | NOS |
| AST | 0  | 0  | 0        | 1   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 0       | 0  | 0  | 0      | 0      | 0      | 0        | 0      | 0      | 0        | 0         | 0      | 0  | 0        | 0  | 3  | 0      | 0  | 0  | 0      | AST |
| NOA | 0  | 0  | 0        | 0   | 0  | 0      | 0      | 0  | 0   | 0  | 0        | 1       | 0  | 0  | 5      | 0      | 2      | 0        | 0      | 2      | 0        | 0         | 0      | 0  | 4        | 0  | 0  | 0      | 0  | 0  | 0      | NOA |
| EXC | 0  | 0  | 2        | 1   | 0  | 1      | 1      | 1  | 1   | 0  | 2        | 12      | 1  | 0  | 4      | 0      | 8      | 5        | 0      | 1      | 1        | 2         | 1      | 0  | 7        | 1  | 5  | 0      | 0  | 0  | 0      | EXC |
| EU  | 0  | 0  | 8        | 0   | 1  | 6      | 2      | 1  | 3   | 0  | 6        | 48      | 3  | 0  | 16     | 1      | 31     | 19       | 0      | 2      | 2        | 5         | 2      | 0  | 29       | 0  | 0  | 1      | 1  | 1  | 0      | EU  |
|     | AL | AM | AT       | AZ  | BA | ΒE     | BG     | ΒY | СН  | CY | CZ       | DE      | DK | EE | ES     | FI     | FR     | GB       | GE     | GR     | HR       | HU        | IE     | IS | IT       | KG | ΚZ | LT     | LU | LV | MD     |     |

Table C.10 Cont.: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of NO<sub>x</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | ME     | MK | ΜT | NL  | NO | PL      | РΤ      | RO      | RS      | RU      | SE      | SI      | SK      | ТJ | ТМ     | TR | UA      | UZ | ATL    | BAS    | BLS    | MED | NOS     | AST | NOA    | BIC | DMS | VOL    | EXC      | EU         |          |
|----------|--------|----|----|-----|----|---------|---------|---------|---------|---------|---------|---------|---------|----|--------|----|---------|----|--------|--------|--------|-----|---------|-----|--------|-----|-----|--------|----------|------------|----------|
| AL       | 5      | 9  | 0  | 0   | 0  | 2       | 0       | 2       | 18      | 1       | 0       | 0       | 1       | 0  | 0      | 1  | 1       | 0  | 0      | 0      | 0      | 14  | 0       | 0   | 3      | 16  | 0   | 0      | 141      | 41         | AL       |
| AM       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 0       | 0  | 0      | 19 | 1       | 0  | 0      | 0      | 0      | 1   | 0       | 61  | 1      | 14  | 0   | 0      | 123      | 2          | AM       |
| AT       | 0      | 0  | 0  | 3   | 0  | 13      | 0       | 2       | 3       | 1       | 0       | 14      | 4       | 0  | 0      | 0  | 1       | 0  | 1      | 1      | 0      | 3   | 3       | 0   | 1      | 14  | 0   | 0      | 356      | 340        | AT       |
| AZ       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 11      | 0       | 0       | 0       | 0  | 1      | (  | 2       | 0  | 0      | 0      | 1      | 0   | 0       | 85  | 0      | 14  | 0   | 0      | 167      | 2          | AZ       |
| BA       | 3      | 0  | 0  | 1   | 0  | 6<br>7  | 0       | 3       | 13      | 1       | 0       | 1       | 3       | 0  | 0      | 0  | 2       | 0  | 0      | 0      | 0      | 4   | 1       | 0   | 2      | 14  | 0   | 0      | 130      | 69<br>F00  | BA       |
| BE       | 0      | 0  | 0  | 59  | 2  | /<br>5  | 0       | 0<br>22 | 0<br>16 | 2       | 1       | 0       | 1       | 0  | 0      | 0  | 11      | 0  | 8<br>0 | 4      | 0      | 2   | 00      | 0   | 1      | 40  | 0   | 0      | 160      | 500<br>111 | DE<br>DC |
| DG<br>RV | 0      | 2  | 0  | 2   | 1  | 3U<br>2 | 0       | 22      | 10      | 33      | 0       | 0       | 1       | 0  | 0      | 9  | 11      | 0  | 0      | 1      | 4      | 4   | 3       | 0   | 1      | 10  | 0   | 0      | 150      | 71         | DG<br>RV |
| СН       | 0      | 0  | 0  | 2   | 1  | 30<br>/ | 0       | 0       | 1       | 33<br>1 | 2       | 0       | 1       | 0  | 0      | 1  | 10      | 0  | 1      | 0      | 0      | 2   | л<br>Л  | 0   | 1      | 10  | 0   | 0      | 106      | 235        | СН       |
| CY       | 0      | 0  | 0  | 0   | 0  | 1       | 0       | 1       | 1       | 3       | 0       | 0       | 0       | 0  | 0      | 67 | 2       | 0  | 0      | 0      | 2      | 41  | -       | 12  | 6      | 31  | 0   | 0      | 111      | 233        | CY       |
| C7       | 0      | 0  | 0  | 6   | 1  | 36      | 0       | 2       | 3       | 2       | 0       | 3       | 10      | 0  | 0      | 0  | 2       | 0  | 1      | 2      | 0      | 1   | 6       | 0   | 0      | 16  | 0   | 0      | 365      | 352        | C7       |
| DE       | 0      | 0  | 0  | 35  | 2  | 23      | 0       | 0       | 0       | 2       | 2       | 1       | 1       | 0  | 0      | 0  | 1       | 0  | 3      | 11     | 0      | 1   | 35      | 0   | 0      | 26  | 0   | 0      | 500      | 483        | DE       |
| DK       | 0      | 0  | 0  | 28  | 8  | 17      | 0       | 0       | 0       | 4       | 11      | 0       | 0       | 0  | 0      | 0  | 1       | 0  | 3      | 52     | 0      | 0   | 61      | 0   | 0      | 19  | 0   | 0      | 319      | 304        | DK       |
| EE       | 0      | 0  | 0  | 2   | 1  | 7       | 0       | 0       | 0       | 14      | 4       | 0       | 0       | 0  | 0      | 0  | 3       | 0  | 0      | 15     | 0      | 0   | 3       | 0   | 0      | 6   | 0   | 0      | 71       | 49         | EE       |
| ES       | 0      | 0  | 0  | 1   | 0  | 0       | 8       | 0       | 0       | 0       | 0       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 6      | 0      | 0      | 13  | 1       | 0   | 4      | 16  | 0   | 0      | 146      | 146        | ES       |
| FI       | 0      | 0  | 0  | 1   | 1  | 2       | 0       | 0       | 0       | 4       | 3       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 0      | 5      | 0      | 0   | 2       | 0   | 0      | 4   | 0   | 0      | 27       | 21         | FI       |
| FR       | 0      | 0  | 0  | 13  | 0  | 3       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 6      | 1      | 0      | 4   | 28      | 0   | 1      | 19  | 0   | 0      | 340      | 328        | FR       |
| GB       | 0      | 0  | 0  | 14  | 2  | 2       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 11     | 2      | 0      | 0   | 40      | 0   | 0      | 20  | 0   | 0      | 229      | 226        | GB       |
| GE       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 4       | 0       | 0       | 0       | 0  | 0      | 8  | 1       | 0  | 0      | 0      | 2      | 0   | 0       | 10  | 0      | 9   | 0   | 0      | 81       | 2          | GE       |
| GL       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 0      | 0      | 0      | 0   | 0       | 0   | 0      | 0   | 0   | 0      | 0        | 0          | GL       |
| GR       | 0      | 4  | 0  | 0   | 0  | 1       | 0       | 3       | 4       | 3       | 0       | 0       | 0       | 0  | 0      | 10 | 4       | 0  | 0      | 0      | 1      | 18  | 0       | 1   | 3      | 16  | 0   | 0      | 98       | 69         | GR       |
| HR       | 1      | 0  | 0  | 2   | 0  | 13      | 0       | 6       | 23      | 1       | 0       | 12      | 6       | 0  | 0      | 0  | 2       | 0  | 0      | 1      | 0      | 9   | 2       | 0   | 2      | 16  | 0   | 0      | 261      | 215        | HR       |
| HU       | 1      | 1  | 0  | 2   | 0  | 33      | 0       | 36      | 35      | 2       | 0       | 12      | 30      | 0  | 0      | 1  | 6       | 0  | 1      | 1      | 0      | 3   | 3       | 0   | 1      | 22  | 0   | 0      | 451      | 395        | HU       |
| IE       | 0      | 0  | 0  | 7   | 1  | 2       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 15     | 1      | 0      | 0   | 17      | 0   | 0      | 14  | 0   | 0      | 185      | 183        | IE       |
| 15       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 1       | 0  | 0      | 0  | 0       | 0  | 1      | 0      | 0      | 0   | 0       | 0   | 0      | 2   | 0   | 0      | 422      | 2          | 15       |
|          | 0      | 0  | 0  | 1   | 0  | 3       | 0       | 1       | 2       | 1       | 0       | 9       | 1       | 1  | 1      | 0  | 1       | 22 | 1      | 0      | 0      | 35  | 1       | 12  | 4      | 24  | 0   | 0      | 432      | 422        |          |
| KG<br>K7 | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 16      | 0       | 0       | 0       | 1  | 1      | 0  | 1       | 22 | 0      | 0      | 0      | 0   | 0       | 13  | 0      | 12  | 0   | 0      | 50       | 1          | KG<br>K7 |
| IT       | 0      | 0  | 0  | 3   | 1  | 37      | 0       | 1       | 1       | 21      | 4       | 0       | 1       | 0  | 0      | 0  | 8       | 0  | 1      | 15     | 0      | 0   | 5       | 10  | 0      | 10  | 0   | 0      | 165      | 118        | IT       |
| LU       | 0      | 0  | 0  | 32  | 1  | 9       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 4      | 2      | 0      | 2   | 30      | 0   | 0      | 28  | 0   | 0      | 534      | 525        | LU       |
| LV       | 0      | 0  | 0  | 2   | 1  | 13      | 0       | 1       | 0       | 18      | 4       | 0       | 0       | 0  | 0      | 0  | 5       | 0  | 0      | 13     | 0      | 0   | 4       | 0   | 0      | 7   | 0   | 0      | 99       | 66         | LV       |
| MD       | 0      | 0  | 0  | 1   | 0  | 23      | 0       | 50      | 3       | 16      | 1       | 0       | 2       | 0  | 0      | 5  | 48      | 0  | 0      | 2      | 5      | 1   | 1       | 0   | 1      | 13  | 0   | 0      | 210      | 105        | MD       |
| ME       | 24     | 1  | 0  | 0   | 0  | 1       | 0       | 1       | 11      | 1       | -0      | 0       | 1       | 0  | 0      | 1  | 1       | 0  | 0      | -0     | 0      | 6   | 0       | 0   | 2      | 13  | 0   | 0      | 70       | 20         | ME       |
| MK       | 1      | 31 | 0  | 0   | 0  | 2       | 0       | 3       | 18      | 1       | 0       | 0       | 1       | 0  | 0      | 3  | 2       | 0  | 0      | 0      | 0      | 5   | 0       | 0   | 2      | 14  | 0   | 0      | 113      | 48         | MK       |
| MT       | 0      | 0  | 5  | 0   | 0  | 0       | 0       | 1       | 1       | 0       | 0       | 0       | 0       | 0  | 0      | 1  | 0       | 0  | 1      | 0      | 0      | 76  | 0       | 0   | 17     | 21  | 0   | 0      | 50       | 46         | MT       |
| NL       | 0      | 0  | 0  | 119 | 3  | 13      | 1       | 0       | 0       | 3       | 3       | 0       | 1       | 0  | 0      | 0  | 1       | 0  | 10     | 11     | 0      | 1   | 115     | 0   | 1      | 48  | 0   | 0      | 605      | 595        | NL       |
| NO       | 0      | 0  | 0  | 1   | 5  | 1       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 1      | 1      | 0      | 0   | 4       | 0   | 0      | 3   | 0   | 0      | 17       | 11         | NO       |
| PL       | 0      | 0  | 0  | 5   | 1  | 118     | 0       | 3       | 1       | 9       | 2       | 1       | 4       | 0  | 0      | 0  | 6       | 0  | 1      | 9      | 0      | 1   | 7       | 0   | 0      | 14  | 0   | 0      | 247      | 222        | PL       |
| PT       | 0      | 0  | 0  | 0   | 0  | 0       | 58      | 0       | 0       | 0       | 0       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 14     | 0      | 0      | 4   | 0       | 0   | 3      | 15  | 0   | 0      | 118      | 118        | PT       |
| RO       | 1      | 1  | 0  | 1   | 0  | 14      | 0       | 107     | 16      | 6       | 0       | 1       | 4       | 0  | 0      | 3  | 16      | 0  | 0      | 1      | 3      | 2   | 1       | 0   | 1      | 15  | 0   | 0      | 232      | 182        | RO       |
| RS       | 4      | (  | 0  | 1   | 0  | 13      | 0       | 22      | 82      | 3       | 0       | 2       | 6       | 0  | 0      | 1  | 4       | 0  | 0      | 1      | 1      | 3   | 1       | 0   | 2      | 19  | 0   | 0      | 256      | 138        | RS       |
| KU<br>SE | 0      | 0  | 0  | 2   | 2  | 3       | 0       | 0       | 0       | 31<br>1 | 7       | 0       | 0       | 0  | 0      | 0  | 2       | 0  | 1      | 2      | 0      | 0   | 0       | 1   | 0      | 0   | 0   | 0      | 42<br>30 | 4<br>35    | SE       |
| SL       | 0      | 0  | 0  | 2   | 0  | 12      | 0       | 3       | 7       | 1       | 0       | 105     | 3       | 0  | 0      | 0  | 1       | 0  | 0      | 1      | 0      | 12  | 2       | 0   | 1      | 17  | 0   | 0      | 424      | 400        | SL       |
| SK       | 0      | 0  | 0  | 1   | 0  | 26      | 0       | 13      | 8       | 1       | 0       | 4       | 47      | 0  | 0      | 0  | 5       | 0  | 0      | 1      | 0      | 2   | 2       | 0   | 0      | 13  | 0   | 0      | 255      | 235        | SK       |
| TJ       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 1       | 0       | 0       | 0       | 7  | 4      | 0  | 0       | 19 | 0      | 0      | 0      | 0   | 0       | 16  | 0      | 10  | 0   | 0      | 36       | 0          | TJ       |
| ТМ       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 8       | 0       | 0       | 0       | 0  | 13     | 1  | 1       | 6  | 0      | 0      | 0      | 0   | 0       | 43  | 0      | 17  | 0   | 0      | 40       | 1          | ТМ       |
| TR       | 0      | 0  | 0  | 0   | 0  | 1       | 0       | 1       | 1       | 5       | 0       | 0       | 0       | 0  | 0      | 82 | 3       | 0  | 0      | 0      | 3      | 9   | 0       | 18  | 2      | 22  | 0   | 0      | 106      | 12         | TR       |
| UA       | 0      | 0  | 0  | 0   | 0  | 16      | 0       | 11      | 1       | 29      | 1       | 0       | 1       | 0  | 0      | 3  | 51      | 0  | 0      | 2      | 3      | 1   | 1       | 0   | 0      | 11  | 0   | 0      | 145      | 49         | UA       |
| UZ       | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 11      | 0       | 0       | 0       | 1  | 7      | 0  | 1       | 40 | 0      | 0      | 0      | 0   | 0       | 17  | 0      | 17  | 0   | 0      | 82       | 2          | UZ       |
| ATL      | 0      | 0  | 0  | 0   | 0  | 0       | 1       | 0       | 0       | 0       | 0       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 4      | 0      | 0      | 0   | 1       | 0   | 0      | 6   | 0   | 0      | 12       | 11         | ATL      |
| BAS      | 0      | 0  | 0  | 7   | 2  | 15      | 0       | 0       | 0       | 3       | 7       | 0       | 0       | 0  | 0      | 0  | 1       | 0  | 1      | 21     | 0      | 0   | 12      | 0   | 0      | 7   | 0   | 0      | 97       | 90         | BAS      |
| BLS      | 0      | 0  | 0  | 0   | 0  | 1       | 0       | 6       | 1       | 16      | 0       | 0       | 0       | 0  | 0      | 16 | 13      | 0  | 0      | 0      | 14     | 3   | 0       | 1   | 1      | 10  | 0   | 0      | 68       | 16         | BLS      |
| MED      | 0      | 0  | 0  | 0   | 0  | 1       | 0       | 1       | 1       | 1       | 0       | 0       | 0       | 0  | 0      | 13 | 2       | 0  | 1      | 0      | 1      | 46  | 0       | 1   | 11     | 20  | 0   | 0      | 70       | 50         | MED      |
| NOS      | 0      | 0  | 0  | 15  | 3  | 4       | 0       | 0       | 0       | 1       | 1       | 0       | 0       | 0  | 0      | 0  | 0       | 0  | 4      | 5      | 0      | 0   | 29      | 0   | 0      | 10  | 0   | 0      | 133      | 129        | NOS      |
| AST      | 0      | 0  | 0  | 0   | 0  | 0       | 0       | 0       | 0       | 2       | 0       | 0       | 0       | 0  | 1      | 4  | 0       | 1  | 0      | 0      | 0      | 2   | 0       | 168 | 1      | 39  | 0   | 0      | 15       | 2          | AST      |
| NUA      | 0      | 0  | 0  | 0   | 0  | 0       | 1       | 0       | 1       | U<br>17 | U<br>1  | 0       | U<br>1  | 0  | 0<br>1 | 2  | 0       | U  | 3      | 0<br>1 | 0      | 15  | 0       | 1   | 40     | 3/  | 0   | 0      | 20       | 10         |          |
| EXC      | U<br>A | 0  | 0  | 2   | 1  | 5<br>16 | 1<br>2  | ა<br>ი  | 1<br>2  | 2<br>۲۱ | 1<br>1  | 1<br>2  | 1<br>C  | 0  | 1      | 4  | 4<br>ว  | 2  | 1<br>2 | T<br>V | U<br>A | 2   | ر<br>12 | 0   | U<br>1 | 12  | 0   | U<br>O | 240      | 00<br>224  | EVC      |
| LU       | MF     | MK | мт | NI  | NO | PI      | ∠<br>PT | RO      | RS      | RU      | ∠<br>SF | ∠<br>SI | ∠<br>SK | τı | тм     | TR | ∠<br>UA | U7 | ATI    | BAS    | BIS    | MFD | NOS     | AST | NOA    | BIC | DMS | VOI    | EXC      | EU         | LU       |

Table C.11: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of NH<sub>3</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL | AM | AT  | ΑZ | BA | BE  | ΒG | ΒY | СН | CY | CZ  | DE      | DK     | EE | ES | FI | FR  | GΒ  | GE | GR | HR      | ΗU  | IE | IS | IT  | KG | ΚZ | LT | LU | LV | MD |     |
|-----|----|----|-----|----|----|-----|----|----|----|----|-----|---------|--------|----|----|----|-----|-----|----|----|---------|-----|----|----|-----|----|----|----|----|----|----|-----|
| AL  | 69 | -0 | 1   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 1   | 2       | 0      | 0  | 0  | 0  | 0   | 0   | 0  | 3  | 1       | 3   | 0  | -0 | 4   | 0  | -0 | 0  | 0  | 0  | 0  | AL  |
| AM  | 0  | 61 | 0   | 12 | -0 | -0  | 0  | 0  | 0  | 0  | -0  | 0       | -0     | -0 | 0  | -0 | 0   | -0  | 2  | -0 | -0      | 0   | -0 | -0 | 0   | 0  | -0 | 0  | 0  | 0  | 0  | AM  |
| AT  | 0  | 0  | 103 | 0  | 0  | 1   | 0  | 1  | 4  | 0  | 15  | 47      | 0      | 0  | 0  | 0  | 4   | 1   | 0  | 0  | 3       | 8   | 0  | 0  | 13  | 0  | 0  | 0  | 0  | 0  | 0  | AT  |
| AZ  | -0 | 4  | 0   | 53 | -0 | -0  | -0 | 0  | 0  | -0 | -0  | -0      | -0     | -0 | -0 | -0 | -0  | -0  | 4  | -0 | -0      | -0  | -0 | -0 | 0   | 0  | -0 | 0  | -0 | -0 | 0  | AZ  |
| BA  | 1  | 0  | 5   | -0 | 94 | 0   | 1  | 1  | 0  | 0  | 5   | 7       | 0      | 0  | 0  | 0  | 1   | 0   | 0  | 0  | 18      | 12  | 0  | -0 | 7   | -0 | -0 | 0  | 0  | 0  | 0  | BA  |
| BE  | 0  | -0 | 1   | -0 | 0  | 185 | -0 | 0  | 2  | -0 | 2   | 92      | 2      | 0  | 1  | 0  | 66  | 36  | -0 | -0 | 0       | 0   | 3  | 0  | 2   | -0 | -0 | 0  | 7  | 0  | 0  | BE  |
| BG  | 1  | 0  | 3   | 0  | 1  | 0   | 97 | 1  | 0  | 0  | 2   | 4       | 0      | 0  | 0  | 0  | 0   | 0   | 0  | 6  | 2       | 7   | 0  | -0 | 2   | -0 | -0 | 0  | 0  | 0  | 1  | BG  |
| ΒY  | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 75 | 0  | -0 | 2   | 11      | 1      | 0  | 0  | 0  | 2   | 1   | 0  | 0  | 0       | 2   | 0  | 0  | 0   | 0  | 0  | 4  | 0  | 1  | 1  | ΒY  |
| СН  | -0 | 0  | 2   | 0  | -0 | 1   | -0 | 0  | 90 | -0 | 1   | 27      | 0      | 0  | 1  | 0  | 15  | 1   | 0  | -0 | 0       | 0   | 0  | 0  | 17  | -0 | -0 | 0  | 0  | 0  | 0  | СН  |
| CY  | 0  | 0  | 0   | 0  | -0 | -0  | -0 | -0 | 0  | 45 | -0  | 0       | -0     | -0 | 0  | -0 | 0   | -0  | 0  | 0  | 0       | 0   | -0 | -0 | 0   | -0 | -0 | -0 | -0 | -0 | 0  | CY  |
| C7  | 0  | 0  | 20  | 0  | 1  | 2   | 0  | 1  | 2  | 0  | 188 | 93      | 2      | 0  | 1  | 0  | 10  | 3   | 0  | 0  | 3       | 17  | 0  | 0  | 3   | 0  | -0 | 1  | 0  | 0  | 0  | C7  |
| DF  | 0  | -0 | -0  | -0 | 0  | 14  | 0  | 1  | 4  | 0  | 13  | 270     | 2      | 0  | 1  | 0  | 25  | 12  | 0  | 0  | 1       | 2   | 1  | 0  | 2   | -0 | -0 | 0  | 1  | 0  | 0  | DE  |
| DK  | 0  | -0 | 1   | _0 | 0  | 5   | 0  | 1  | 0  | _0 | 2   | 73      | 02     | 0  | 1  | 0  | 20  | 10  | -0 | _0 | 0       | 1   | 3  | 0  | 0   | -0 | _0 | 1  | 0  | 0  | 0  | DK  |
| FF  | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 5  | 0  | _0 | 1   | 10      | 32     | 34 | 0  | 4  | 1   | 2   | 0  | 0  | 0       | 1   | 0  | 0  | 0   | -0 | 0  | 4  | 0  | 5  | 0  | FF  |
| FS  | 0  | 0  | 0   | _0 | _0 | 0   | _0 | 0  | 0  | _0 | 0   | 1       | 0      | 0  | 70 | 0  | 5   | 1   | _0 | _0 | 0       | 0   | 0  | _0 | 1   | _0 | _0 | 0  | 0  | 0  | 0  | ES  |
| EI  | 0  | 0  | 0   | -0 | -0 | 0   | -0 | 2  | 0  | -0 | 0   | 1       | 1      | 1  | 0  | 15 | 0   | 0   | -0 | -0 | 0       | 0   | 0  | -0 | 0   | -0 | -0 | 1  | 0  | 0  | 0  | EI  |
| ED  | 0  | 0  | 1   | 0  | 0  | 0   | 0  | 2  | 5  | -0 | 1   | 4<br>26 | 1      | 0  | 4  | 10 | 100 | 12  | 0  | 0  | 0       | 0   | 1  | -0 | 6   | -0 | 0  | 1  | 1  | 0  | 0  | ED  |
|     | 0  | 0  | 1   | 0  | -0 | 9   | 0  | 0  | 5  | 0  | 1   | 20      | 1      | 0  | 4  | 0  | 122 | 170 | 0  | 0  | 0       | 0   | 1  | 0  | 1   | -0 | -0 | 0  | 1  | 0  | 0  |     |
| GB  | -0 | -0 | 0   | -0 | -0 | 1   | 0  | 0  | 0  | -0 | 1   | 17      | 2      | 0  | 2  | 0  | 19  | 1/2 | -0 | -0 | 0       | 0   | 1  | 0  | 1   | -0 | -0 | 0  | 0  | 0  | 0  | GB  |
| GE  | -0 | 2  | 0   | 0  | -0 | -0  | -0 | 0  | 0  | -0 | -0  | -0      | -0     | -0 | 0  | -0 | -0  | -0  | 20 | -0 | -0      | 0   | 0  | -0 | 0   | -0 | -0 | 0  | -0 | 0  | 0  | GE  |
| GL  | -0 | -0 | -0  | -0 | -0 | -0  | -0 | -0 | -0 | -0 | -0  | -0      | -0     | -0 | 0  | -0 | -0  | 0   | -0 | -0 | -0      | -0  | -0 | -0 | -0  | -0 | -0 | -0 | -0 | -0 | -0 | GL  |
| GR  | 2  | 0  | 1   | 0  | 0  | 0   | 5  | 0  | 0  | 0  | 1   | 1       | 0      | -0 | 0  | 0  | 0   | 0   | 0  | 54 | 0       | 2   | 0  | -0 | 1   | -0 | -0 | 0  | 0  | 0  | 0  | GR  |
| HR  | 0  | 0  | 11  | 0  | 16 | 0   | 1  | 1  | 1  | 0  | 9   | 11      | 0      | 0  | 1  | 0  | 1   | 0   | 0  | 0  | 71      | 16  | 0  | -0 | 26  | -0 | 0  | 0  | 0  | 0  | 0  | HR  |
| ΗU  | 0  | 0  | 16  | 0  | 2  | 0   | 1  | 1  | 1  | -0 | 17  | 22      | 1      | 0  | 1  | 0  | 2   | 1   | 0  | 0  | 10      | 117 | 0  | 0  | 8   | 0  | 0  | 1  | 0  | 0  | 0  | ΗU  |
| IE  | -0 | 0  | 0   | 0  | -0 | 3   | -0 | 0  | 0  | -0 | 0   | 8       | 1      | 0  | 0  | 0  | 8   | 43  | 0  | -0 | 0       | 0   | 52 | 0  | 0   | 0  | -0 | 0  | 0  | 0  | 0  | IE  |
| IS  | -0 | -0 | 0   | -0 | -0 | 0   | -0 | 0  | 0  | -0 | 0   | 1       | 0      | 0  | 0  | -0 | 0   | 1   | -0 | -0 | -0      | -0  | 0  | 3  | 0   | -0 | -0 | 0  | 0  | 0  | -0 | IS  |
| IT  | 0  | 0  | 3   | 0  | 0  | 0   | 0  | 0  | 2  | 0  | 1   | 3       | 0      | 0  | 2  | 0  | 2   | 0   | 0  | 0  | 2       | 1   | 0  | -0 | 193 | -0 | -0 | 0  | 0  | 0  | 0  | IT  |
| KG  | -0 | 0  | 0   | 0  | -0 | -0  | -0 | -0 | 0  | -0 | -0  | -0      | -0     | -0 | -0 | -0 | -0  | -0  | 0  | -0 | -0      | -0  | -0 | -0 | 0   | 18 | 2  | -0 | -0 | -0 | -0 | KG  |
| ΚZ  | -0 | 0  | 0   | 0  | -0 | 0   | -0 | 0  | 0  | -0 | 0   | 0       | 0      | -0 | 0  | 0  | 0   | 0   | 0  | -0 | -0      | 0   | 0  | -0 | 0   | 1  | 34 | 0  | 0  | 0  | 0  | ΚZ  |
| LT  | 0  | 0  | 1   | 0  | 0  | 1   | 0  | 18 | 0  | -0 | 3   | 19      | 4      | 1  | 0  | 1  | 2   | 2   | 0  | 0  | 0       | 2   | 0  | 0  | 1   | -0 | 0  | 53 | 0  | 5  | 0  | LT  |
| LU  | 0  | 0  | 3   | -0 | 0  | 47  | 0  | 0  | 2  | 0  | 5   | 137     | 1      | 0  | 1  | 0  | 58  | 17  | 0  | 0  | 0       | 0   | 2  | 0  | 2   | 0  | -0 | 0  | 74 | 0  | 0  | LU  |
| LV  | 0  | 0  | 1   | 0  | 0  | 1   | 0  | 13 | 0  | -0 | 2   | 14      | 3      | 4  | 0  | 1  | 1   | 2   | 0  | 0  | 0       | 1   | 0  | 0  | 0   | -0 | 0  | 17 | 0  | 33 | 0  | LV  |
| MD  | 0  | 0  | 1   | 0  | 0  | 0   | 3  | 3  | 0  | 0  | 2   | 6       | 1      | 0  | 0  | 0  | 1   | 0   | 0  | 0  | 1       | 4   | 0  | -0 | 1   | 0  | 0  | 1  | 0  | 0  | 62 | MD  |
| ME  | 10 | -0 | 2   | -0 | 6  | 0   | 0  | 1  | 0  | 0  | 1   | 4       | 0      | 0  | 0  | 0  | 0   | 0   | -0 | 0  | 3       | 4   | 0  | -0 | 5   | 0  | -0 | 0  | 0  | 0  | 0  | ME  |
| MK  | 10 | 0  | 2   | 0  | 1  | 0   | 3  | 1  | 0  | 0  | 2   | 4       | 0      | 0  | 0  | 0  | 0   | 0   | 0  | 14 | 2       | 6   | 0  | -0 | 2   | -0 | -0 | 0  | 0  | 0  | 0  | MK  |
| MT  | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0   | 1       | 0      | 0  | 4  | 0  | 3   | 0   | 0  | 1  | 0       | 1   | 0  | 0  | 11  | 0  | -0 | 0  | 0  | 0  | 0  | MT  |
| NL  | -0 | -0 | 1   | -0 | 0  | 45  | -0 | 0  | 1  | -0 | 3   | 107     | 3      | 0  | 1  | 0  | 35  | 51  | -0 | -0 | 0       | 0   | 4  | 0  | 1   | -0 | -0 | 0  | 1  | 0  | 0  | NL  |
| NO  | -0 | -0 | 0   | -0 | -0 | 0   | -0 | 0  | 0  | -0 | 0   | 5       | 2      | 0  | 0  | 0  | 1   | 1   | -0 | -0 | 0       | 0   | 0  | -0 | 0   | -0 | -0 | 0  | 0  | 0  | 0  | NO  |
| ΡL  | 0  | 0  | 4   | 0  | 0  | 2   | 0  | 5  | 1  | 0  | 22  | 61      | 4      | 0  | 1  | 0  | 6   | 3   | 0  | 0  | 1       | 10  | 0  | 0  | 1   | 0  | -0 | 2  | 0  | 1  | 1  | ΡL  |
| РТ  | 0  | 0  | 0   | -0 | -0 | 0   | -0 | 0  | 0  | -0 | 0   | 1       | 0      | 0  | 25 | 0  | 2   | 0   | -0 | -0 | 0       | 0   | 0  | -0 | 0   | 0  | -0 | 0  | 0  | 0  | 0  | РТ  |
| RO  | 0  | 0  | 3   | 0  | 1  | 0   | 5  | 1  | 0  | 0  | 3   | 6       | 0      | 0  | 0  | 0  | 1   | 0   | 0  | 0  | 2       | 12  | 0  | -0 | 2   | 0  | 0  | 0  | 0  | 0  | 2  | RO  |
| RS  | 2  | 0  | 6   | 0  | 5  | 0   | 5  | 1  | 1  | 0  | 6   | 10      | 0      | 0  | 0  | 0  | 1   | 0   | 0  | 1  | 7       | 19  | 0  | -0 | 3   | -0 | -0 | 0  | 0  | 0  | 0  | RS  |
| RU  | 0  | 0  | 0   | 0  | 0  | 0   | 0  | 2  | 0  | -0 | 0   | 1       | 0      | 0  | 0  | 0  | 0   | 0   | 0  | 0  | 0       | 0   | 0  | -0 | 0   | 0  | 4  | 0  | 0  | 0  | 0  | RU  |
| SE  | 0  | -0 | 0   | -0 | 0  | 1   | 0  | 1  | 0  | -0 | 0   | 13      | 6      | 0  | 0  | 1  | 1   | 2   | -0 | 0  | 0       | 0   | 0  | -0 | 0   | -0 | -0 | 1  | 0  | 0  | 0  | SE  |
| SI  | 0  | 0  | 28  | 0  | 1  | 0   | 0  | 1  | 1  | -0 | 8   | 15      | 0      | 0  | 1  | 0  | 1   | 0   | 0  | 0  | 23      | g   | 0  | -0 | 64  | 0  | 0  | 0  | 0  | 0  | 0  | SI  |
| SK  | 0  | 0  | 12  | 0  | 1  | 1   | 1  | 2  | 1  | 0  | 20  | 20      | 2      | 0  | 1  | 0  | 3   | 1   | 0  | 0  | 23<br>A | 15  | 0  | 0  | 1   | 0  | 0  | 1  | 0  | 0  | 0  | SK  |
| ті  | 0  | 0  | 12  | 0  | 0  | 0   | 0  | 2  | 0  | 0  | 29  | 29      | 2<br>0 | 0  | 0  | 0  | 0   | 0   | 0  | 0  | -       | -5  | 0  | 0  | -   | 1  | 0  | 0  | 0  | 0  | 0  | ті  |
| тм  | -0 | 0  | -0  | 1  | -0 | -0  | 0- | -0 | 0  | -0 | -0  | -0      | 0-     | -0 | -0 | -0 | -0  | -0  | 0  | 0- | -0      | -0  | -0 | -0 | -0  | 0  | -0 | -0 | -0 | -0 | -0 | тм  |
|     | -0 | 0  | -0  | 0  | -0 | -0  | -0 | 0  | 0  | -0 | -0  | -0      | 0      | -0 | -0 | -0 | -0  | -0  | 0  | -0 | -0      | -0  | -0 | -0 | -0  | -0 | 0  | 0  | -0 | -0 | 0  |     |
|     | 0  | 0  | 1   | 0  | 0  | 0   | 1  | 0  | 0  | 0  | 0   | 6       | 1      | -0 | 0  | -0 | 1   | 0   | 0  | 0  | 0       | 0   | 0  | -0 | 1   | -0 | -0 | 1  | 0  | 0  | 2  |     |
|     | 0  | 0  | 1   | 0  | 0  | 0   | 1  | ð  | 0  | 0  | 2   | 0       | 1      | 0  | 0  | 0  | 1   | 0   | 0  | 0  | 0       | 4   | 0  | -0 | 1   | 0  | 0  | 1  | 0  | 0  | 3  |     |
|     | -0 | 0  | -0  | 0  | -0 | -0  | -0 | 0  | 0  | -0 | -0  | -0      | 0      | -0 | -0 | -0 | -0  | 0   | 0  | -0 | -0      | -0  | 1  | -0 | -0  | 2  | 2  | 0  | -0 | 0  | 0  |     |
| AIL | -0 | -0 | 0   | -0 | -0 | 0   | -0 | 0  | 0  | -0 | 0   | 1       | 0      | 0  | 2  | -0 | 3   | 4   | -0 | -0 | -0      | -0  | 1  | -0 | 0   | -0 | -0 | 0  | 0  | 0  | 0  | AIL |
| BAS | 0  | 0  | 1   | 0  | 0  | 2   | 0  | 3  | 0  | -0 | 2   | 49      | 17     | 2  | 0  | 3  | 3   | 5   | 0  | 0  | 0       | 1   | 1  | 0  | 0   | -0 | -0 | 4  | 0  | 2  | 0  | BAS |
| BL2 | 0  | 0  | 1   | 0  | 0  | 0   | 5  | 1  | 0  | 0  | 0   | 1       | 0      | 0  | 0  | 0  | 0   | 0   | 2  | 2  | 0       | 1   | 0  | -0 | 1   | -0 | -0 | 0  | 0  | 0  | 2  | BT2 |
| MED | 1  | 0  | 0   | 0  | -0 | 0   | 0  | 0  | 0  | -0 | 0   | 1       | 0      | -0 | 4  | -0 | 2   | 0   | 0  | -0 | 0       | 0   | 0  | -0 | 7   | -0 | -0 | 0  | 0  | -0 | 0  | MED |
| NOS | 0  | -0 | 0   | -0 | 0  | 12  | 0  | 0  | 0  | -0 | 1   | 42      | 10     | 0  | 1  | 0  | 26  | 65  | -0 | 0  | 0       | 0   | 5  | -0 | 0   | -0 | -0 | 0  | 0  | 0  | 0  | NOS |
| AST | -0 | 0  | 0   | 1  | -0 | -0  | -0 | 0  | 0  | 0  | 0   | 0       | 0      | -0 | -0 | -0 | -0  | -0  | 0  | -0 | 0       | 0   | 0  | -0 | 0   | 0  | 0  | 0  | -0 | 0  | 0  | AST |
| NOA | 0  | 0  | 0   | 0  | -0 | 0   | 0  | 0  | 0  | -0 | 0   | 0       | -0     | -0 | 2  | -0 | 0   | 0   | 0  | -0 | -0      | -0  | 0  | -0 | -1  | -0 | -0 | -0 | 0  | -0 | 0  | NOA |
| EXC | 0  | 0  | 1   | 0  | 0  | 1   | 1  | 2  | 1  | 0  | 2   | 10      | 1      | 0  | 3  | 0  | 5   | 4   | 0  | 0  | 1       | 2   | 0  | 0  | 4   | 0  | 6  | 1  | 0  | 0  | 0  | EXC |
| EU  | 0  | 0  | 5   | 0  | 0  | 5   | 3  | 1  | 1  | 0  | 8   | 40      | 3      | 1  | 11 | 1  | 21  | 15  | 0  | 2  | 2       | 6   | 2  | 0  | 16  | -0 | -0 | 1  | 0  | 1  | 0  | EU  |
|     | AL | AM | AT  | ΑZ | ΒA | ΒE  | ΒG | ΒY | СН | CY | CZ  | DE      | DK     | EE | ES | FI | FR  | GΒ  | GΕ | GR | HR      | ΗU  | IE | IS | IT  | KG | ΚZ | LT | LU | LV | MD |     |

Table C.11 Cont.: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of NH<sub>3</sub>. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | ME    | M        | IK N    | ΛT  | NL  | NO | PL      | РΤ | RO      | RS      | RU       | SE | SI       | SK | ТJ | ТМ | TR       | UA      | UZ     | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC | DMS | VOL | EXC       | EU        |          |
|----------|-------|----------|---------|-----|-----|----|---------|----|---------|---------|----------|----|----------|----|----|----|----------|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------|-----------|----------|
| AL       | 1     | L        | 2       | 0   | 0   | 0  | 1       | -0 | 1       | 13      | -0       | 0  | 0        | 0  | 0  | -0 | 0        | 0       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | -0  | 1   | 0   | 0   | 105       | 19        | AL       |
| AM       | -(    | )        | 0       | -0  | -0  | 0  | -0      | -0 | 0       | -0      | -0       | 0  | 0        | 0  | 0  | -0 | 23       | -0      | -0     | 0   | 0   | 0   | 0   | 0   | 21  | 0   | 1   | 0   | 0   | 98        | 0         | AM       |
| AT       | (     | )        | 0       | -0  | 1   | 0  | 6       | 0  | 1       | 2       | 0        | 0  | 8        | 2  | 0  | 0  | -0       | 0       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 2   | 0   | 0   | 221       | 214       | AT       |
| AZ       | -(    | ) .      | -0      | -0  | -0  | -0 | -0      | -0 | -0      | -0      | 2        | -0 | 0        | -0 | 0  | 0  | 6        | -0      | 0      | 0   | 0   | 0   | 0   | 0   | 19  | -0  | 0   | 0   | 0   | 69<br>100 | -0        | AZ       |
| BA       | 1     |          | 0       | 0   | 10  | 0  | 5       | -0 | 3       | 10      | 0        | 0  | 1        | 2  | 0  | -0 | 0        | 1       | -0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 182       | 69<br>451 | BA       |
| BE       | -(    | ) .<br>\ | -U<br>1 | -0  | 49  | 0  | 3<br>2  | 0  | 0<br>21 | 0<br>22 | 1        | 0  | 0        | 1  | -0 | -0 | -0<br>10 | 2       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | -0  | 1   | 0   | 0   | 453       | 451       | BE       |
| DG<br>RV | (     | )<br>\   | 1       | 0   | 1   | 0  | 2       | 0  | 21      | 23      | 1/       | 1  | 0        | 1  | 0  | -0 | 12       | د<br>10 | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 195       | 70        | DG<br>RV |
| СН       | _(    | ,<br>)   | _0      | _0  | 1   | 0  | 37<br>1 | 0  | 2       | -0      | 14       | 0  | 0        | 1  | 0  | 0  | -0       | 10      | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 179       | 67        | СН       |
| CY       | -(    | ,<br>,   | -0      | -0  | -0  | -0 | -0      | -0 | -0      | -0      | -0       | -0 | 0        | -0 | _0 | 0  | -0<br>3  | -0      | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 4   | 2   | 0   | 0   | 47        | 46        | CY       |
| C7       | (     | )        | 0       | -0  | 4   | 0  | 32      | 0  | 3       | 4       | 1        | 1  | 2        | 10 | 0  | 0  | 0        | 2       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 3   | 0   | 0   | 407       | 396       | C7       |
| DE       | (     | ,<br>)   | -0      | -0  | 24  | 0  | 15      | 0  | 0       | 0       | 0        | 1  | 1        | 1  | 0  | 0  | -0       | 1       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | -0  | 3   | 0   | 0   | 400       | 395       | DE       |
| DK       | (     | )        | 0       | -0  | 17  | 1  | 14      | 0  | 0       | 0       | 1        | 6  | 0        | 0  | -0 | -0 | -0       | 1       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 2   | 0   | 0   | 248       | 243       | DK       |
| EE       | (     | )        | 0       | 0   | 1   | 1  | 10      | 0  | 1       | 0       | 13       | 4  | 0        | 0  | 0  | 0  | 0        | 2       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 0   | 0   | 0   | 104       | 82        | EE       |
| ES       | -(    | )        | -0      | -0  | 0   | 0  | 0       | 2  | -0      | -0      | -0       | 0  | 0        | 0  | 0  | 0  | -0       | -0      | 0      | 0   | 0   | 0   | 0   | 0   | -0  | -0  | 0   | 0   | 0   | 90        | 90        | ES       |
| FI       | (     | )        | 0       | -0  | 1   | 0  | 2       | 0  | 0       | 0       | 5        | 3  | 0        | 0  | 0  | 0  | 0        | 1       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 0   | 0   | 0   | 38        | 30        | FI       |
| FR       | (     | )        | -0      | 0   | 6   | 0  | 1       | 0  | 0       | 0       | 0        | 0  | 0        | 0  | 0  | 0  | -0       | 0       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 199       | 193       | FR       |
| GB       | -(    | )        | -0      | -0  | 11  | 0  | 1       | 0  | 0       | 0       | 0        | 0  | 0        | 0  | -0 | 0  | -0       | 0       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 241       | 240       | GB       |
| GE       | -(    | )        | -0      | -0  | -0  | 0  | -0      | -0 | 0       | -0      | 1        | 0  | 0        | 0  | 0  | -0 | 8        | 0       | -0     | 0   | 0   | 0   | 0   | 0   | 2   | -0  | 0   | 0   | 0   | 42        | -0        | GE       |
| GL       | -(    | )        | -0      | 0   | -0  | -0 | -0      | -0 | -0      | -0      | -0       | -0 | -0       | -0 | -0 | -0 | -0       | -0      | -0     | 0   | 0   | 0   | 0   | 0   | -0  | -0  | -1  | 0   | 0   | -0        | -0        | GL       |
| GR       | (     | )        | 3       | 0   | 0   | 0  | 0       | 0  | 3       | 6       | -0       | 0  | 0        | 0  | -0 | 0  | 8        | 0       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 0   | 90        | 70        | GR       |
| HR       | (     | )        | 0       | 0   | 1   | 0  | 6       | 0  | 4       | 17      | 0        | 0  | 8        | 3  | 0  | -0 | 0        | 1       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 206       | 171       | HR       |
| HU       | (     | )        | 0       | 0   | 1   | 0  | 15      | 0  | 17      | 19      | 1        | 0  | 4        | 17 | 0  | 0  | 0        | 4       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 2   | 0   | 0   | 281       | 253       | HU       |
| IE       | -(    | ) .      | -0      | -0  | 4   | 0  | 1       | 0  | 0       | 0       | 0        | 0  | 0        | 0  | 0  | 0  | -0       | 0       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 0   | 0   | 0   | 122       | 121       | IE       |
| IS       | -(    | ) .      | -0      | -0  | 0   | 0  | 0       | -0 | -0      | -0      | -0       | 0  | -0       | -0 | -0 | -0 | 0        | -0      | 0      | 0   | 0   | 0   | 0   | 0   | -0  | -0  | -0  | 0   | 0   | 5         | 2         | IS       |
|          | (     | )        | 0       | 0   | 0   | 0  | 1       | 0  | 0       | 1       | -0       | 0  | 3        | 0  | 1  | -0 | -0       | 0       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 216       | 213       |          |
| KG<br>KZ | -(    | ) .<br>\ | -0      | -0  | -0  | -0 | -0      | -0 | -0      | -0      | -0<br>17 | -0 | 0        | -0 | 1  | 0  | -0       | -0      | 5<br>2 | 0   | 0   | 0   | 0   | 0   | 3   | -0  | 1   | 0   | 0   | 20        | -0        | ng<br>k7 |
| 1 T      | -(    | ) ·      | -0      | -0  | 2   | 0  | 52      | -0 | 2       | -0      | 1/       | 3  | 0        | 1  | 0  | 0  | 0        | 1       | 2      | 0   | 0   | 0   | 0   | 0   | 9   | -0  | 1   | 0   | 0   | 100       | 155       |          |
| 111      | ſ     | ,<br>)   | -0      | -0  | 18  | 0  | 5       | 0  | 2       | 0       | 9        | 0  | 0        | 0  | 0  | 0  | -0       | 0       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 375       | 371       | 111      |
| IV       | (     | )        | 0       | -0  | 2   | 0  | 22      | 0  | 1       | 1       | 10       | 3  | 0        | 1  | 0  | 0  | -0       | 4       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 137       | 109       | IV       |
| MD       | (     | )        | 0       | -0  | 0   | 0  | 12      | 0  | 33      | 2       | 7        | 0  | 0        | 1  | 0  | 0  | 4        | 43      | 0      | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 2   | 0   | 0   | 189       | 67        | MD       |
| ME       | 27    | ,        | 0       | 0   | 0   | 0  | 2       | 0  | 2       | 10      | -0       | 0  | 0        | 1  | 0  | -0 | -0       | 0       | -0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 81        | 26        | ME       |
| MK       | (     | ) !      | 53      | 0   | 0   | 0  | 2       | -0 | 4       | 33      | -0       | 0  | 0        | 1  | 0  | -0 | 1        | 1       | -0     | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 143       | 44        | MK       |
| MT       | (     | )        | 0       | 91  | 0   | 0  | 0       | 0  | 0       | 0       | -0       | 0  | 0        | 0  | 0  | 0  | 1        | 0       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 1   | 0   | 0   | 114       | 113       | MT       |
| NL       | -(    | )        | -0      | -0  | 219 | 0  | 3       | 0  | 0       | -0      | 0        | 1  | 0        | 0  | -0 | -0 | -0       | 0       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | -0  | 1   | 0   | 0   | 479       | 477       | NL       |
| NO       | -(    | )        | -0      | -0  | 1   | 6  | 1       | 0  | -0      | -0      | -0       | 1  | 0        | 0  | -0 | -0 | -0       | 0       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 0   | 0   | 0   | 19        | 13        | NO       |
| PL       | (     | )        | 0       | -0  | 4   | 0  | 223     | 0  | 5       | 2       | 3        | 2  | 1        | 7  | 0  | 0  | 0        | 8       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   | 378       | 359       | PL       |
| PT       | -(    | )        | -0      | -0  | 0   | 0  | 0       | 46 | 0       | -0      | -0       | 0  | 0        | 0  | 0  | 0  | -0       | 0       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | -0  | 0   | 0   | 0   | 76        | 75        | ΡT       |
| RO       | (     | )        | 0       | 0   | 0   | 0  | 4       | 0  | 101     | 13      | 1        | 0  | 1        | 3  | 0  | 0  | 2        | 8       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 1   | 0   | 0   | 174       | 145       | RO       |
| RS       | 1     |          | 4       | 0   | 0   | 0  | 5       | -0 | 17      | 136     | 0        | 0  | 1        | 4  | 0  | -0 | 1        | 1       | -0     | 0   | 0   | 0   | 0   | 0   | 0   | -0  | 1   | 0   | 0   | 238       | 87        | RS       |
| RU       | (     | )        | 0       | 0   | 0   | 0  | 1       | -0 | 0       | 0       | 50       | 12 | 0        | 0  | 0  | 0  | 0        | 4       | 0      | 0   | 0   | 0   | 0   | 0   | 1   | -0  | 0   | 0   | 0   | 64<br>40  | 4         | RU       |
| SE<br>CI | (     | )        | 0       | 0   | 2   | 1  | 4       | 0  | 0       | 0       | 1        | 13 | U<br>114 | 1  | -0 | -0 | 0        | 1       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 49        | 45        | SE       |
| SI<br>SI | (     | )<br>\   | 0       | 0   | 1   | 0  | 4<br>25 | 0  | 12      | 4<br>0  | 1        | 1  | 114<br>2 | 1  | 0  | 0  | -0       | 7       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 200       | 270       | SK       |
|          | -0    | ,<br>)   | -0      | -0  | -0  | -0 | -0      | -0 | -0      | -0      | -0       | -0 | _0       | -0 | 4  | 0  | -0       | -0      | 4      | 0   | 0   | 0   | 0   | 0   | 1   | -0  | 2   | 0   | 0   | 301       | _0        | TI       |
| ТМ       | -(    | )        | -0      | -0  | -0  | -0 | -0      | -0 | -0      | -0      | -0       | -0 | -0       | -0 | 0  | 9  | -0       | -0      | 2      | 0   | 0   | 0   | 0   | 0   | 10  | -0  | 0   | 0   | 0   | 14        | -0        | ТМ       |
| TR       | (     | )        | 0       | 0   | 0   | 0  | 0       | -0 | 1       | 0       | -0       | 0  | 0        | 0  | 0  | -0 | 109      | 0       | -0     | 0   | 0   | 0   | 0   | 0   | 4   | 0   | 1   | 0   | 0   | 115       | 4         | TR       |
| UA       | (     | )        | 0       | 0   | 0   | 0  | 16      | 0  | 9       | 1       | 20       | 0  | 0        | 1  | 0  | 0  | 3        | 123     | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 208       | 47        | UA       |
| UZ       | -(    | )        | -0      | -0  | 0   | -0 | -0      | -0 | -0      | -0      | 1        | 0  | -0       | -0 | 1  | 1  | -0       | 0       | 17     | 0   | 0   | 0   | 0   | 0   | 2   | -0  | 0   | 0   | 0   | 24        | -0        | UZ       |
| ATL      | (     | )        | -0      | -0  | 0   | 0  | 0       | 0  | 0       | -0      | -0       | 0  | 0        | 0  | -0 | 0  | -0       | 0       | -0     | 0   | 0   | 0   | 0   | 0   | -0  | -0  | -2  | 0   | 0   | 12        | 12        | ATL      |
| BAS      | 5 (   | )        | 0       | 0   | 6   | 1  | 28      | 0  | 1       | 0       | 5        | 13 | 0        | 0  | 0  | 0  | 0        | 2       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 1   | 0   | 0   | 154       | 142       | BAS      |
| BLS      | (     | )        | 0       | 0   | 0   | 0  | 2       | 0  | 13      | 2       | 11       | 0  | 0        | 0  | 0  | 0  | 41       | 22      | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 111       | 28        | BLS      |
| ME       | ) -(  | )        | 0       | -0  | 0   | 0  | -0      | 0  | 0       | 0       | -0       | 0  | 0        | -0 | -0 | 0  | -11      | -0      | 0      | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 4         | 15        | MED      |
| NOS      | 5 -0  | )        | -0      | -0  | 28  | 2  | 4       | 0  | 0       | 0       | 0        | 1  | 0        | 0  | -0 | 0  | 0        | 0       | 0      | 0   | 0   | 0   | 0   | 0   | -0  | 0   | 0   | 0   | 0   | 200       | 197       | NOS      |
| AST      | -(    | )        | -0      | -0  | -0  | -0 | -0      | -0 | 0       | -0      | 1        | 0  | 0        | 0  | 0  | 0  | 1        | 0       | 0      | 0   | 0   | 0   | 0   | 0   | 62  | 1   | 6   | 0   | 0   | 4         | 0         | AST      |
| NOA      | ۰ - ( | )        | -0      | -0  | 0   | -0 | -0      | 0  | 0       | -0      | -0       | 0  | 0        | -0 | -0 | 0  | -1       | -0      | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 18  | 8   | 0   | 0   | 0         | 1         | NOA      |
| EXC      | . (   | )        | 0       | 0   | 2   | 0  | 7       | 0  | 2       | 1       | 23       | 1  | 0        | 1  | 0  | 0  | 5        | 6       | 1      | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 98        | 49        | EXC      |
| EU       | (     | )        | 0       | 0   | 7   | 0  | 21      | 1  | 7       | 3       | 1        | 2  | 1        | 3  | 0  | 0  | 1        | 2       | 0      | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 193       | 183       | EU       |
|          | ME    | : M      | ік М    | VII | NL  | NO | ۲L      | РĹ | RO      | RS      | КU       | SE | SI       | SK | Ъ  | ΙM | IК       | UΑ      | UΖ     | AIL | BAS | BLS | MED | NOS | AST | NUA | RIC | DMS | VOL | EXC       | ΕU        |          |

Table C.12: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL   | AM     | AT   | ΑZ   | ΒA     | BE  | BG     | ΒY     | СН     | CY       | CZ      | DE     | DK     | EE | ES     | FI  | FR      | GB     | GE     | GR     | HR     | ΗU     | IE | IS | IT     | KG     | ΚZ  | LT     | LU     | LV       | MD     |     |
|-----|------|--------|------|------|--------|-----|--------|--------|--------|----------|---------|--------|--------|----|--------|-----|---------|--------|--------|--------|--------|--------|----|----|--------|--------|-----|--------|--------|----------|--------|-----|
| AL  | 2    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 1      | 0      | 0  | 1      | 0   | 1       | 0      | 0      | 1      | 0      | 0      | 0  | 0  | 3      | 0      | 0   | 0      | 0      | 0        | 0      | AL  |
| AM  | 0    | 6      | -0   | 0    | -0     | -0  | -0     | 0      | 0      | 0        | -0      | -0     | -0     | -0 | -0     | -0  | -0      | -0     | 0      | 0      | -0     | -0     | -0 | -0 | 0      | -0     | 0   | -0     | -0     | -0       | -0     | AM  |
| AT  | 0    | 0      | 5    | 0    | 0      | 0   | 0      | 0      | 1      | 0        | 1       | 2      | 0      | 0  | 0      | 0   | 1       | 0      | 0      | 0      | 1      | 1      | 0  | 0  | -0     | -0     | 0   | 0      | 0      | 0        | 0      | AT  |
| AZ  | 0    | 0      | 0    | 0    | 0      | 0   | -0     | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 1      | 0      | 0      | 0      | 0  | 0  | 0      | -0     | 0   | 0      | 0      | 0        | -0     | AZ  |
| BA  | 0    | 0      | 1    | 0    | -1     | 0   | 0      | 0      | 0      | 0        | 1       | 2      | 0      | 0  | 0      | 0   | 1       | 1      | 0      | 0      | 0      | 1      | 0  | 0  | 2      | 0      | 0   | 0      | 0      | 0        | 0      | BA  |
| BE  | 0    | 0      | 1    | 0    | 0      | 8   | 0      | 1      | 1      | 0        | 2       | 26     | 1      | 0  | 1      | 0   | 10      | 12     | 0      | 0      | 0      | 0      | 1  | 0  | 2      | 0      | 0   | 0      | 0      | 0        | 0      | BE  |
| BG  | 0    | 0      | 0    | 0    | 0      | 0   | 2      | 1      | 0      | 0        | 1       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 1      | 0      | 1      | 0  | 0  | 1      | -0     | 0   | 0      | 0      | 0        | 0      | BG  |
| BY  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | -0       | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | BY  |
| СН  | 0    | 0      | 1    | _0   | 0      | 0   | 0      | _0     | 6      | 0        | _0      | 2      | 0      | _0 | 0      | _0  | 1       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | _0     | 0   | _0     | 0      | _0       | -0     | СН  |
| cv  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 1      | 0      | _0       | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 2      | 0      | 0      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | CV  |
| C7  | 0    | 0      | 2    | 0    | 0      | 0   | 0      | 1      | 1      | -0       | 7       | 5      | 0      | 0  | 0      | 0   | 1       | 1      | 0      | 2      | 0      | 1      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | C7  |
|     | 0    | 0      | 2    | 0    | 0      | 0   | 0      | 1      | 1      | 0        | 2       | 15     | 0      | 0  | 1      | 0   | L<br>L  | 1      | 0      | 0      | 0      | 1      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      |     |
|     | 0    | 0      | 2    | 0    | 0      | 2   | 0      | 0      | 2      | 0        | 3<br>1  | 12     | 1      | 0  | 1      | 0   | 5<br>1  | 3<br>1 | 0      | 0      | 0      | 0      | 0  | 0  | 2      | 0      | 0   | 0      | 0      | 0        | 0      |     |
|     | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 2      | 1      | 0  | 0      | 0   | 1       | T      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      |     |
| EE  | 0    | 0      | 0    | -0   | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | -0     | 0   | 0      | 0      | 0        | 0      | EE  |
| ES  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 5      | 0   | 1       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | ES  |
| Η   | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | -0       | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | FI  |
| FR  | 0    | 0      | 0    | 0    | 0      | 1   | 0      | 0      | 1      | 0        | 0       | 3      | 0      | 0  | 1      | 0   | 7       | 1      | 0      | 0      | 0      | 0      | 0  | 0  | 2      | 0      | 0   | 0      | 0      | 0        | 0      | FR  |
| GB  | 0    | 0      | 0    | 0    | 0      | 1   | 0      | 0      | 0      | 0        | 0       | 2      | 0      | 0  | 0      | 0   | 2       | 10     | 0      | 0      | 0      | 0      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | GB  |
| GE  | 0    | 0      | 0    | 1    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 3      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | GE  |
| GL  | 0    | 0      | 0    | 0    | -0     | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | -0     | 0   | 0      | 0      | 0        | 0      | GL  |
| GR  | 1    | 0      | 0    | 0    | 0      | 0   | 1      | 1      | 0      | 0        | 1       | 1      | 0      | 0  | 1      | 0   | 1       | 0      | 0      | 4      | 0      | 0      | 0  | 0  | 3      | 0      | 0   | 0      | 0      | 0        | 0      | GR  |
| HR  | 0    | 0      | 1    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 2      | 0      | 0  | 1      | 0   | 1       | 0      | 0      | 0      | 3      | 1      | 0  | 0  | 4      | -0     | 0   | 0      | 0      | 0        | 0      | HR  |
| ΗU  | 0    | 0      | 2    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 2       | 2      | 0      | 0  | 0      | 0   | 1       | 0      | 0      | 0      | 2      | 5      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | HU  |
| IE  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 1  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | IE  |
| IS  | 0    | 0      | 0    | 0    | 0      | 0   | -0     | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | -0     | IS  |
| IT  | 0    | 0      | 1    | 0    | 0      | 0   | 0      | 0      | 1      | 0        | 1       | 3      | 0      | 0  | 2      | 0   | 4       | 1      | 0      | 0      | 1      | 0      | 0  | 0  | 67     | 0      | 0   | 0      | 0      | 0        | 0      | IT  |
| KG  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 3      | 1   | 0      | 0      | 0        | 0      | KG  |
| ΚZ  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 1   | 0      | 0      | 0        | 0      | ΚZ  |
| LT  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | -0     | 0   | 0      | 0      | 0        | -0     | LT  |
| 1.0 | 0    | 0      | 2    | 0    | 0      | 3   | 0      | 0      | 1      | 0        | 2       | 17     | 0      | 0  | 1      | 0   | 7       | 3      | 0      | 0      | 0      | 0      | 0  | 0  | 2      | 0      | 0   | 0      | 1      | 0        | 0      | 10  |
| IV  | 0    | 0      | 0    | -0   | 0      | 0   | 0      | 0      | 0      | -0       | 0       | _0     | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | -0     | -0  | 0      | 0      | 0        | -0     | IV  |
|     | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 1      |     |
| ME  | 1    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 1      | 0      | 0  | 0      | 0   | 1       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 2      | _0     | 0   | 0      | 0      | 0        | 0      | ME  |
|     | 1    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 1      | 0      | 0  | 0      | 0   | 1       | 0      | 0      | 2      | 0      | 1      | 0  | 0  | 2      | -0     | 0   | 0      | 0      | 0        | 0      |     |
|     | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 1      | 0      | 0  | 0      | 0   | 1       | 1      | 0      | 1      | 0      | 1      | 0  | 0  | 10     | 0      | 0   | 0      | 0      | 0        | 0      |     |
|     | 0    | 0      | 1    | 0    | 0      | - 0 | 0      | 1      | 1      | 0        | 1       | 2      | 1      | 0  | 3<br>1 | 0   | 10      | 14     | 0      | 1      | 0      | 0      | 1  | 0  | 10     | 0      | 0   | 0      | 0      | 0        | 0      |     |
| NL  | 0    | 0      | 1    | 0    | 0      | 1   | 0      | 1      | 1      | 0        | 4       | 26     | 1      | 0  | 1      | 0   | 12      | 14     | 0      | 0      | 0      | 0      | T  | 0  | 2      | 0      | 0   | 0      | 0      | 0        | 0      | NL  |
| NO  | 0    | 0      | 0    | 0    | -0     | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | NO  |
| PL  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 2       | 4      | 0      | 0  | 0      | 0   | 1       | 1      | 0      | 0      | 0      | 1      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | PL  |
| PT  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 3      | 0   | 1       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | PT  |
| RO  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 1      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | RO  |
| RS  | 0    | 0      | 1    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 1       | 2      | 0      | 0  | 0      | 0   | 1       | 1      | 0      | 1      | 1      | 2      | 0  | 0  | 1      | -0     | 0   | 0      | 0      | 0        | 0      | RS  |
| RU  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | RU  |
| SE  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | -0       | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | SE  |
| SI  | 0    | 0      | 2    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 2      | 0      | 0  | 0      | 0   | 1       | 0      | 0      | 0      | 3      | 1      | 0  | 0  | 3      | 0      | 0   | 0      | 0      | 0        | 0      | SI  |
| SK  | 0    | 0      | 2    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 3       | 3      | 0      | 0  | 0      | 0   | 1       | 1      | 0      | 0      | 1      | 3      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | SK  |
| ТJ  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | ТJ  |
| ТМ  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | ТМ  |
| TR  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | TR  |
| UA  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | UA  |
| UZ  | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 1      | 0   | 0      | 0      | 0        | 0      | UZ  |
| ATL | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 0      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | ATL |
| BAS | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 1      | 0      | 0      | 0      | 0      | 0  | 0  | 0      | 0      | 0   | 0      | 0      | 0        | 0      | BAS |
| BLS | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 1      | 0      | 0        | 0       | 1      | 0      | 0  | 0      | 0   | 0       | 0      | 0      | 1      | 0      | 0      | 0  | 0  | 1      | 0      | 0   | 0      | 0      | 0        | 0      | BLS |
| MED | 0    | 0      | 0    | 0    | 0      | 0   | 0      | 0      | 0      | 0        | 1       | 2      | 0      | 0  | 2      | 0   | 3       | 1      | 0      | 2      | 0      | 0      | 0  | 0  | 7      | 0      | 0   | 0      | 0      | 0        | 0      | MED |
| NOS | 0    | 0<br>0 | ñ    | 0    | 0<br>0 | 1   | 0<br>0 | ñ      | 0<br>0 | 0<br>0   | 0       | 2      | 0<br>0 | 0  | 0      | 0   | 1       | 3      | ñ      | 0      | 0<br>0 | 0<br>0 | 0  | 0  | 0      | ñ      | 0   | 0      | ñ      | 0        | 0<br>0 | NOS |
| AST | ñ    | n      | ñ    | n    | n      | n   | ñ      | ñ      | ñ      | n        | ñ       | 0      | n      | ñ  | ñ      | ñ   | n       | n      | ñ      | ñ      | n      | ñ      | n  | n  | õ      | ñ      | ñ   | n      | ñ      | n        | ñ      | AST |
| NOA | n    | n      | n    | n    | n      | n   | n      | n      | n      | n        | n       | 1      | n      | n  | 2      | n   | 1       | n      | n      | n      | n      | n      | n  | n  | 2      | n      | n   | n      | n      | n        | n      | NOA |
| FXC | n    | n      | n    | n    | n      | n   | n      | n      | n      | n        | n       | 1      | n      | n  | ے<br>م | n   | 1       | n      | n      | n      | n      | n      | n  | n  | ے<br>1 | n      | n   | n      | n      | n        | n      | FXC |
| FU  | 0    | n<br>N | 1    | 0    | 0      | 0   | n      | n<br>N | n<br>N | _0       | 1       | 3<br>T | n<br>N | 0  | 1      | n   | т<br>2  | 1      | n<br>N | n<br>N | n<br>N | n<br>N | n  | n  | 6      | n<br>N | 0   | n<br>0 | n<br>N | n        | n<br>N | FU  |
| LU  | Δι   |        | Δт   | Δ7   | RA     | RE  | BC     | RV     | СЦ     | -0<br>CV | 1<br>(7 |        | ייח    | FE | ۲¢     | EI  | ∠<br>FP | CP.    | 0<br>6 | CP     | чР     | нп     | IE | 15 | т      | ĸc     | и7  | IT     | 111    | 11/      | мп     | LU  |
|     | / \L | ,      | / 11 | / \Z | 57     |     | 20     |        | CII    |          | ~~      |        |        |    | -0     | • • | 111     | 50     |        | 51     |        |        | ·  | 5  |        |        | 114 | - 1    | -0     | <b>۲</b> |        |     |

Table C.12 Cont.: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|            | ME       | MK  | МΤ       | NL       | NO     | PL      | РΤ       | RO     | RS      | RU     | SE     | SI      | SK     | ТJ      | ТΜ         | TR      | UA     | UZ       | ATL      | BAS | BLS      | MED   | NOS  | AST      | NOA    | BIC      | DMS   | VOL | EXC     | EU       |          |
|------------|----------|-----|----------|----------|--------|---------|----------|--------|---------|--------|--------|---------|--------|---------|------------|---------|--------|----------|----------|-----|----------|-------|------|----------|--------|----------|-------|-----|---------|----------|----------|
| AL         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 1       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -3       | 0     | 0   | 17      | 11       | AL       |
| AM         | -0       | -0  | 0        | -0       | -0     | -0      | -0       | -0     | -0      | 1      | -0     | -0      | -0     | -0      | 0          | -0      | -0     | 0        | -0       | 0   | -0       | 0     | 0    | 9        | 0      | -5       | 0     | 0   | 7       | -0       | AM       |
| AT         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 1      | 0      | 1       | 0      | -0      | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 14      | 12       | AT       |
| AZ         | 0        | 0   | 0        | 0        | -0     | 0       | 0        | -0     | 0       | 3      | 0      | 0       | 0      | -0      | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 10       | 0      | -4       | 0     | 0   | 6       | 0        | AZ       |
| BA         | 0        | 0   | 0        | 0        | 0      | 2       | 0        | 0      | 1       | 1      | 0      | 0       | 0      | -0      | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -3       | 0     | 0   | 15      | 12       | BA       |
| BE         | 0        | 0   | 0        | 9        | 1      | 3       | 0        | 0      | 0       | 4      | 1      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | 1        | 0     | 0   | 87      | 78       | BE       |
| BG         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 1      | 1       | 3      | 0      | 0       | 0      | -0      | 0          | 3       | 2      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 20      | 11       | BG       |
| ΒY         | 0        | 0   | 0        | 0        | -0     | 1       | 0        | 0      | 0       | 2      | 0      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 7       | 4        | ΒY       |
| СН         | 0        | 0   | 0        | -0       | 0      | -0      | 0        | -0     | 0       | 0      | 0      | 0       | -0     | -0      | -0         | 0       | -0     | -0       | 0        | -0  | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 11      | 5        | СН       |
| CY         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 1      | 0       | 4      | 0      | 0       | 0      | 0       | 0          | 9       | 2      | 0        | 0        | 0   | 0        | 0     | 0    | 6        | 2      | -5       | 0     | 0   | 23      | 7        | CY       |
| CZ         | 0        | 0   | 0        | 0        | 0      | 4       | 0        | 1      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 29      | 25       | CZ       |
| DE         | 0        | 0   | 0        | 2        | 0      | 2       | 0        | 0      | 0       | 2      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | 43      | 38       | DE       |
| DK         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 2      | 0      | 0       | 0      | 0       | -0         | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 10      | 7        | DK       |
| EE         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 2      | 0      | 0       | 0      | 0       | -0         | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | 5       | 3        | EE       |
| ES         | 0        | 0   | 0        | 0        | 0      | 0       | 1        | 0      | 0       | 0      | 0      | 0       | 0      | -0      | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -2       | 0     | 0   | 10      | 9        | ES       |
| FI         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -1       | 0     | 0   | 3       | 1        | FI       |
| FR         | 0        | 0   | 0        | 1        | 0      | 0       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | -0      | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 18      | 16       | FR       |
| GB         | 0        | 0   | 0        | 1        | 0      | 1       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -1       | 0     | 0   | 21      | 19       | GB       |
| GE         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 2      | 0      | 0       | 0      | -0      | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 3        | 0      | -2       | 0     | 0   | 8       | 1        | GE       |
| GL         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0          | -0      | 0      | 0        | 0        | 0   | 0        | 0     | 0    | -0       | 0      | 0        | 0     | 0   | 0       | 0        | GI       |
| GR         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 1      | 1       | 3      | 0      | 0       | 0      | 0       | 0          | 2       | 2      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -3       | 0     | 0   | 24      | 15       | GR       |
| HR         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 1      | 1       | 1      | 0      | 1       | 0      | -0      | -0         | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -3       | 0     | 0   | 21      | 17       | HR       |
| HU         | 0        | 0   | 0        | 0        | 0      | 3       | 0        | 2      | 1       | 1      | 0      | 1       | 1      | -0      | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -4       | 0     | 0   | 30      | 24       | HU       |
| IF         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | 3       | 2        | IF       |
| IS         | 0        | 0   | 0        | -0       | 0      | 0       | 0        | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | _0       | 0     | 0   | 0       | 0        | IS       |
| IT         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 1      | 0      | 1       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -1       | 0     | 0   | 88      | 85       | IT       |
| KG         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 2        | 0        | 0   | 0        | 0     | 0    | 3        | 0      | _1       | 0     | 0   | 6       | 00       | KG       |
| K7         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 4      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 1        | 0      | _2       | 0     | 0   | 7       | 1        | K7       |
| IT         | 0        | 0   | 0        | 0        | _0     | 1       | 0        | 0      | 0       | -<br>1 | 0      | 0       | 0      | _0      | _0         | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | י<br>ה  | 3        | IT       |
| 111        | 0        | 0   | 0        | 3        | -0     | 1       | 0        | 0      | 0       | 2      | 0      | 0       | 0      | -0      | -0         | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -3       | 0     | 0   | 18      | 13       | 111      |
|            | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | 40<br>5 | 43       |          |
|            | 0        | 0   | 0        | 0        | 0      | 2       | 0        | 1      | 0       | 2      | 0      | 0       | 0      | -0      | -0         | 0       | 0<br>2 | -0       | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | 12      | 5        |          |
| ME         | 0        | 0   | 0        | 0        | 0      | 2       | 0        | 1      | 0       | 3<br>1 | 0      | 0       | 0      | 0       | 0          | 0       | 2      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -4<br>2  | 0     | 0   | 1/      | 10       | ME       |
|            | 0        | 2   | 0        | 0        | 0      | 2       | 0        | 1      | 1       | 2      | 0      | 0       | 0      | 0       | 0          | 1       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -2       | 0     | 0   | 21      | 10       |          |
|            | 0        | 0   | 2        | 0        | 0      | 2       | 0        | 1      | 1       | 2      | 0      | 0       | 0      | -0      | 0          | 1       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1<br>2 | -2       | 0     | 0   | 21      | 27       | MT       |
| NI         | 0        | 0   | 0        | 14       | 0      | 1       | 0        | 0      | 0       | 1      | 1      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 2<br>1 | -2       | 0     | 0   | 29      | 21<br>01 | NI       |
|            | 0        | 0   | 0        | 14       | 0      | 4       | 0        | 0      | 0       | 4      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | 2        | 0     | 0   | 99      | 91       |          |
|            | 0        | 0   | 0        | 0        | 0      | 6       | 0        | 1      | 0       | 2      | 0      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -0       | 0     | 0   | 1<br>22 | 10       |          |
|            | 0        | 0   | 0        | 0        | 0      | 0       | 2        | 1      | 0       | 2      | 0      | 0       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -5<br>2  | 0     | 0   | 22      | 10       |          |
|            | 0        | 0   | 0        | 0        | 0      | 0<br>2  | 0        | 1      | 1       | 2      | 0      | 0       | 0      | 0       | 0          | 1       | 0<br>2 | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -2       | 0     | 0   | 10      | 11       |          |
| PS         | 0        | 1   | 0        | 0        | 0      | 2       | 0        | 1      | 1       | 2      | 0      | 0       | 1      | -0      | 0          | 1       | 2      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -4       | 0     | 0   | 25      | 16       | PS       |
| PII        | 0        | 0   | 0        | 0        | 0      | 2       | 0        | 0      | 4       | 2<br>5 | 0      | 0       | 0      | -0      | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 1      | -5<br>1  | 0     | 0   | 25      | 10       | RJ<br>PH |
| SE         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -1       | 0     | 0   | 2       | 1        | SE       |
| SL         | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 1      | 1       | 1      | 0      | 5       | 0      | 0       | 0          | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -1       | 0     | 0   | 2       | 20       | SL       |
| SK         | 0        | 0   | 0        | 0        | 0      | 5       | 0        | 1      | 1       | 2      | 0      | 0       | 2      | -0      | -0         | 0       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -5       | 0     | 0   | 22      | 20       | SK       |
|            | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 1      | 0      | 0       | 2      | 0       | 0          | 0       | 0      | 2        | 0        | 0   | 0        | 0     | 0    | 7        | 0      | -5<br>1  | 0     | 0   | 29      | 24       | TI       |
| тм         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 3      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 2<br>0   | 0        | 0   | 0        | 0     | 0    | 1/       | 0      | -1       | 0     | 0   | 7       | 1        | тм       |
| TP         | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | ງ<br>ງ | 0      | 0       | 0      | 0       | 0          | 5       | 1      | 0        | 0        | 0   | 0        | 0     | 0    | 14       | 1      | -2       | 0     | 0   | 12      | 3        | TP       |
|            | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 5      | 0      | 0       | 0      | 0       | 0          | 0       | 3      | 0        | 0        | 0   | 0        | 0     | 0    | -        | 0      | _3       | 0     | 0   | 1/      | 5        |          |
|            | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 3      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 1        | 0        | 0   | 0        | 0     | 0    | 7        | 0      | -5<br>2  | 0     | 0   | 14      | 1        |          |
|            | 0        | 0   | 0        | 0        | 0      | 0       | 0        | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 4        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -2       | 0     | 0   | 1       | 1        |          |
| RVC<br>BVC | 0        | 0   | 0        | 0        | 0      | 1       | 0<br>A   | 0      | 0       | 0<br>n | 0<br>n | 0       | 0      | ں<br>م  | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 0        | 0      | -U<br>-D | 0     | 0   | 1 7     | Ĕ        | RVC      |
| BIC        | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 1      | 0       | 2      | 0      | 0       | 0      | 0       | 0          | 1       | U<br>2 | 0        | 0        | 0   | 0        | 0     | 0    | 1        | 0      | -2       | 0     | 0   | י<br>רב | о<br>7   | BIC      |
|            | 0        | 0   | 0        | 0        | 0      | 1       | 0        | о<br>Т | 0       | 9<br>7 | 0      | 0       | 0      | 0       | 0          | 4       | 3<br>1 | 0        | 0        | 0   | 0        | 0     | 0    | 1<br>1   | U<br>c | -2<br>2  | 0     | 0   | 20      | 1<br>20  | DL3      |
|            | 0        | 0   | 0        | 1        | 0      | U<br>T  | 0        | 0      | 0       | 2      | U<br>A | 0       | U<br>A | 0       | 0          | 2       | U<br>L | 0        | 0        | 0   | 0        | 0     | 0    | 2        | 3      | -3<br>1  | 0     | 0   | 20      | 2U<br>11 |          |
| NCT        | 0        | 0   | 0        | T        | 0      | 0       | 0        | 0      | 0       | 1      | 0      | 0       | 0      | 0       | 0          | 1       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | U<br>20  | 0      | -1       | 0     | 0   | 12      | 11       | NU3      |
| ASI        | 0        | U   | U        | U        | 0      | 0       | 0        | 0      | 0       | T      | U<br>A | 0       | U<br>A | 0       | 0          | T       | 0      | 0        | U        | U   | U        | 0     | 0    | 32<br>1  | U      | -3       | 0     | U   | 4       | 1<br>L   | AS I     |
| EVC        | 0        | 0   | 0        | 0        | 0      | 1       | 0        | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | 1        | 5      | -2       | 0     | 0   | 11      | ŏ        | INUA     |
| ENC        | 0        | 0   | 0        | 1        | U<br>A | 1       | 0        | 0      | 0       | 3<br>1 | U<br>A | 0       | U<br>A | 0       | 0          | 0       | 0      | 0        | 0        | 0   | 0        | 0     | 0    | ۰<br>۲   | 0      | -2       | 0     | 0   |         | 0        | EVC      |
| EU         | U<br>M.F | U   | U<br>T N | VII<br>T |        | DI<br>T | U<br>T D |        | U<br>DC | T      |        | U<br>CI | 0      | ט<br>יד | U<br>T \ 4 | U<br>TP | U      | U<br>דיו | U<br>אדי |     | U<br>DIC |       |      | U<br>ACT |        | -2       |       |     | 23      | 20       | ΕU       |
|            | IVIE     | NIN | IVII     | INL      | υV     | ٢L      | гΪ       | лU     | ĸэ      | ΛU     | JΕ     | ы       | эn     | ١J      | I IVI      | ιĸ      | υA     | υZ       | AIL      | DAJ | DL3      | IVIED | 1102 | ADI      | NUA    | DIC      | DIVI2 | VUL | EVC     | EU       |          |

Table C.13: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of PPM, SO<sub>x</sub>, NO<sub>x</sub>, NH<sub>3</sub> and VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL  | AM  | AT     | ΑZ     | ΒA     | BE     | BG       | ΒY  | СН  | CY  | CZ     | DE       | DK     | EE     | ES     | FI      | FR       | GB     | GE  | GR  | HR  | ΗU     | ΙE     | IS | IT   | KG   | ΚZ  | LT     | LU  | LV  | MD  |     |
|-----|-----|-----|--------|--------|--------|--------|----------|-----|-----|-----|--------|----------|--------|--------|--------|---------|----------|--------|-----|-----|-----|--------|--------|----|------|------|-----|--------|-----|-----|-----|-----|
| AL  | 478 | 0   | 4      | 0      | 44     | 1      | 9        | 2   | 1   | 0   | 6      | 10       | 0      | 0      | 5      | 0       | 4        | 1      | 0   | 36  | 6   | 9      | 0      | 0  | 35   | 0    | 0   | 0      | 0   | 0   | 0   | AL  |
| AM  | 0   | 406 | 0      | 51     | 0      | 0      | 1        | 0   | 0   | 1   | 0      | 0        | 0      | 0      | 0      | 0       | 0        | 0      | 24  | 1   | 0   | 0      | 0      | 0  | 0    | 0    | 8   | 0      | 0   | 0   | 0   | AM  |
| AT  | 0   | 0   | 355    | 0      | 8      | 6      | 2        | 2   | 17  | 0   | 68     | 203      | 1      | 0      | 3      | 0       | 22       | 7      | 0   | 1   | 18  | 36     | 1      | 0  | 55   | 0    | 0   | 1      | 1   | 0   | 0   | AT  |
| AZ  | 0   | 46  | 0      | 228    | 0      | 0      | 0        | 1   | 0   | 0   | 0      | 0        | 0      | 0      | 0      | 0       | 0        | 0      | 68  | 0   | 0   | 0      | 0      | 0  | 0    | 0    | 22  | 0      | 0   | 0   | 0   | ΑZ  |
| BA  | 4   | 0   | 15     | 0      | 573    | 1      | 6        | 2   | 1   | 0   | 23     | 31       | 1      | 0      | 4      | 0       | 6        | 3      | 0   | 3   | 51  | 36     | 0      | 0  | 31   | 0    | 0   | 1      | 0   | 0   | 0   | BA  |
| BF  | 0   | 0   | 7      | 0      | 1      | 582    | 0        | 2   | 10  | 0   | 15     | 364      | 6      | 1      | 9      | 1       | 319      | 152    | 0   | 0   | 0   | 1      | 9      | 0  | 9    | 0    | 0   | 2      | 20  | 1   | 0   | BF  |
| BG  | 4   | 0   | . 6    | 0      | 16     | 1      | 438      | 5   | 1   | 0   | 10     | 16       | 1      | 0      | 2      | 1       | 3        | 202    | 1   | 33  | 5   | 18     | 0      | 0  | 8    | 0    | 1   | 1      | _0  | 0   | 5   | BG  |
| RV  | 0   | 0   | 1      | 0      | 2      | 2      | +30<br>2 | 22A | 0   | 0   | 20     | 33       | 1      | 5      | 1      | 6       | 1        | 6      | 0   | 0   | 1   | 5      | 1      | 0  | 2    | 0    | 2   | 21     | 0   | 0   | 3   | RV  |
| СН  | 0   | 0   | 24     | 0      | 1      | 7      | 0        | 1   | 307 | 0   | 0<br>0 | 170      | -      | 0      | 1      | 0       | 110      | 0<br>0 | 0   | 0   | 1   | 1      | 1      | 0  | 79   | 0    | 0   | 21     | 2   | 0   | 0   | СН  |
| СП  | 1   | 1   | 24     | 1      | 1      | 0      | 6        | 1   | 391 | 110 | 0      | 119      | 0      | 0      | 4      | 0       | 110      | 0      | 0   | 26  | 1   | 1      | 1      | 0  | 70   | 0    | 1   | 0      | 2   | 0   | 0   | CH  |
| CT  | 1   | 1   | 70     | 1      | 4      | 10     | 0        | 1   | 0   | 110 | 1      | 210      | 0      | 1      | ა<br>ე | 1       | 2        | 12     | 0   | 20  | 10  | L<br>L | 1      | 0  | 10   | 0    | 1   | 0      | 1   | 1   | 0   |     |
|     | 0   | 0   | 70     | 0      | 8<br>Q | 10     | 2        | 3   | 8   | 0   | 030    | 310      | 4      | 1      | 3      | 1       | 38       | 13     | 0   | 1   | 10  | 52     | 1      | 0  | 12   | 0    | 0   | 2      | I   | 1   | 0   |     |
| DE  | 0   | 0   | 37     | 0      | 2      | 51     | 0        | 3   | 20  | 0   | 60     | 845      | 13     | 1      | 5      | 1       | 105      | 53     | 0   | 0   | 2   | 6      | 4      | 0  | 10   | 0    | 0   | 2      | 6   | 1   | 0   | DE  |
| DK  | 0   | 0   | 2      | 0      | 0      | 22     | 0        | 4   | 1   | -0  | 11     | 229      | 309    | 2      | 2      | 3       | 27       | (4     | 0   | 0   | 0   | 1      | 6      | 0  | 1    | 0    | 0   | 4      | 1   | 2   | 0   | DK  |
| EE  | 0   | 0   | 1      | 0      | 0      | 2      | 0        | 13  | 0   | 0   | 3      | 23       | (      | 95     | 0      | 27      | 3        | 9      | 0   | 0   | 0   | 1      | 1      | 0  | 1    | 0    | 1   | 11     | 0   | 20  | 1   | EE  |
| ES  | 0   | 0   | 1      | 0      | 0      | 2      | 0        | 0   | 1   | 0   | 1      | 7        | 0      | 0      | 415    | 0       | 28       | 5      | 0   | 0   | 0   | 0      | 1      | 0  | 6    | 0    | 0   | 0      | 0   | 0   | 0   | ES  |
| FI  | 0   | 0   | 0      | 0      | 0      | 1      | 0        | 4   | 0   | 0   | 1      | 10       | 3      | 4      | 0      | 73      | 1        | 3      | 0   | 0   | 0   | 0      | 0      | 0  | 0    | 0    | 0   | 2      | 0   | 2   | 0   | FI  |
| FR  | 0   | 0   | 5      | 0      | 1      | 37     | 0        | 1   | 21  | 0   | 8      | 123      | 2      | 0      | 28     | 0       | 526      | 62     | 0   | 0   | 1   | 1      | 4      | 0  | 26   | 0    | 0   | 0      | 5   | 0   | 0   | FR  |
| GB  | 0   | 0   | 1      | 0      | 0      | 17     | 0        | 1   | 1   | 0   | 3      | 51       | 5      | 0      | 7      | 1       | 54       | 571    | 0   | 0   | 0   | 0      | 26     | 1  | 2    | 0    | 0   | 0      | 1   | 0   | 0   | GB  |
| GE  | 0   | 30  | 0      | 34     | 0      | 0      | 1        | 1   | 0   | 0   | 0      | 0        | 0      | 0      | 0      | 0       | 0        | 0      | 255 | 1   | 0   | 0      | 0      | 0  | 0    | 0    | 7   | 0      | 0   | 0   | 0   | GE  |
| GL  | 0   | 0   | 0      | -0     | 0      | 0      | 0        | 0   | 0   | 0   | 0      | 0        | 0      | 0      | 0      | 0       | 0        | 0      | -0  | 0   | 0   | 0      | 0      | 0  | 0    | 0    | 0   | 0      | 0   | 0   | 0   | GL  |
| GR  | 13  | 0   | 2      | 0      | 16     | 0      | 50       | 2   | 0   | 0   | 4      | 7        | 0      | 0      | 5      | 0       | 3        | 1      | 0   | 240 | 2   | 5      | 0      | 0  | 20   | 0    | 1   | 0      | 0   | 0   | 1   | GR  |
| HR  | 3   | 0   | 46     | 0      | 151    | 2      | 6        | 3   | 2   | 0   | 47     | 59       | 1      | 0      | 6      | 0       | 10       | 4      | 0   | 3   | 312 | 76     | 0      | 0  | 92   | 0    | 0   | 1      | 0   | 0   | 0   | HR  |
| ΗU  | 1   | 0   | 74     | 0      | 37     | 3      | 11       | 6   | 4   | 0   | 82     | 96       | 2      | 1      | 4      | 1       | 13       | 6      | 0   | 3   | 65  | 643    | 0      | 0  | 37   | 0    | 0   | 2      | 0   | 1   | 1   | ΗU  |
| IE  | 0   | 0   | 0      | 0      | 0      | 7      | 0        | 1   | 0   | 0   | 1      | 22       | 3      | 0      | 3      | 0       | 21       | 178    | 0   | 0   | 0   | 0      | 206    | 1  | 1    | 0    | 0   | 0      | 0   | 0   | 0   | IE  |
| IS  | 0   | 0   | 0      | 0      | 0      | 0      | 0        | 0   | 0   | 0   | 0      | 2        | 0      | 0      | 0      | 0       | 0        | 4      | 0   | 0   | 0   | 0      | 1      | 33 | 0    | 0    | 0   | 0      | 0   | 0   | 0   | IS  |
| IT  | 2   | 0   | 20     | 0      | 17     | 2      | 2        | 1   | 9   | 0   | 10     | 26       | 0      | 0      | 18     | 0       | 34       | 3      | 0   | 2   | 15  | 6      | 0      | 0  | 1073 | 0    | 0   | 0      | 0   | 0   | 0   | IT  |
| KG  | 0   | 0   | 0      | 0      |        | 0      | 0        | 0   | 0   | 0   | 0      | _0       | 0      | 0      | 0      | 0       | 0        | 0      | 0   | 0   | -0  | 0      | 0      | 0  | 0    | 132  | 30  | 0      | 0   | 0   | 0   | KG  |
| K7  | 0   | 1   | 0      | 1      | 0      | 0      | 0        | 1   | 0   | 0   | 0      | 1        | 0      | 0      | 0      | 0       | 0        | 0      | 0   | 0   | 0   | 0      | 0      | 0  | 0    | 7    | 187 | 0      | 0   | 0   | 0   | K7  |
| 17  | 0   | 0   | 2      | 0      | 1      | 1      | 1        | 56  | 0   | 0   | 10     | 51       | 10     | 0<br>0 | 0      | 0       | 5        | 12     | 0   | 0   | 1   | 5      | 1      | 0  | 2    | 0    | 107 | 130    | 0   | 26  | 2   | 17  |
|     | 0   | 0   | 14     | 0      | 1      | 160    | 1        | 50  | 11  | 0   | 24     | 500      | 201    | 1      | 7      | 9       | J<br>214 | 74     | 0   | 0   | 1   | 2      | г<br>Г | 0  | 10   | 0    | 1   | 1.59   | 200 | 20  | 2   |     |
|     | 0   | 0   | 14     | 0      | 1      | 100    | 1        | 2   | 11  | 0   | 24     | 209      | о<br>0 | 16     | 1      | 12      | 314      | 14     | 0   | 0   | 1   | 2      | 5<br>1 | 0  | 10   | 0    | 1   | 1      | 200 | 106 | 1   |     |
|     | 0   | 0   | T      | 0      | 1      | 2      | 10       | 33  | 1   | 0   | 11     | 33<br>33 | 9      | 10     | 0      | 12      | Д        | 11     | 1   | 0   | 1   | 12     | 1      | 0  | 1    | 0    | 1   | 40     | 0   | 120 | 1   |     |
|     | 0   | 0   | 4      | 0      | 1      | 1      | 18       | 17  | 1   | 0   | 11     | 23       | 1      | 2      | 2      | 2       | 4        | 2      | 1   | 3   | 2   | 13     | 0      | 0  | 5    | 0    | 3   | 3      | 0   | 1   | 232 | ND  |
| ME  | 43  | 0   | 4      | 0      | 94     | 1      | 1        | 2   | 1   | 0   | 8      | 14       | 0      | 0      | 4      | 0       | 4        | 2      | 0   | 0   | 8   | 11     | 0      | 0  | 24   | 0    | 0   | 0      | 0   | 0   | 0   | ME  |
| MK  | 50  | 0   | 4      | 0      | 20     | 1      | 35       | 2   | 1   | 0   | 8      | 12       | 0      | 0      | 3      | 0       | 3        | 1      | 0   | 95  | 4   | 15     | 0      | 0  | 13   | 0    | 0   | 0      | 0   | 0   | 1   | MK  |
| MI  | 1   | 0   | 2      | 0      | 16     | 1      | 3        | 1   | 1   | 0   | 4      | 9        | 0      | 0      | 29     | 0       | 26       | 3      | 0   | 6   | 3   | 3      | 0      | 0  | 95   | 0    | 0   | 0      | 0   | 0   | 0   | MI  |
| NL  | 0   | 0   | 6      | 0      | 0      | 205    | 0        | 3   | 4   | 0   | 20     | 465      | 15     | 1      | 8      | 1       | 172      | 199    | 0   | 0   | 1   | 2      | 12     | 0  | 6    | 0    | 0   | 2      | 5   | 1   | 0   | NL  |
| NO  | 0   | 0   | 0      | 0      | 0      | 1      | 0        | 1   | 0   | 0   | 1      | 12       | 4      | 1      | 0      | 2       | 2        | 6      | 0   | 0   | 0   | 0      | 0      | 0  | 0    | 0    | 0   | 0      | 0   | 0   | 0   | NO  |
| ΡL  | 0   | 0   | 9      | 0      | 4      | 7      | 2        | 20  | 2   | 0   | 65     | 164      | 11     | 3      | 2      | 3       | 16       | 13     | 0   | 1   | 3   | 24     | 1      | 0  | 5    | 0    | 0   | 8      | 1   | 3   | 2   | PL  |
| ΡT  | 0   | 0   | 0      | 0      | 0      | 1      | 0        | 0   | 0   | 0   | 1      | 5        | 0      | 0      | 181    | 0       | 10       | 4      | 0   | 0   | 0   | 0      | 1      | 0  | 2    | 0    | 0   | 0      | 0   | 0   | 0   | PΤ  |
| RO  | 2   | 0   | 10     | 0      | 17     | 1      | 38       | 8   | 1   | 0   | 15     | 27       | 1      | 1      | 2      | 1       | 5        | 2      | 0   | 4   | 7   | 48     | 0      | 0  | 10   | 0    | 1   | 1      | 0   | 0   | 11  | RO  |
| RS  | 15  | 0   | 20     | 0      | 81     | 2      | 48       | 5   | 2   | 0   | 29     | 40       | 1      | 0      | 3      | 1       | 6        | 3      | 0   | 16  | 29  | 78     | 0      | 0  | 17   | 0    | 0   | 1      | 0   | 0   | 1   | RS  |
| RU  | 0   | 0   | 0      | 1      | 0      | 0      | 0        | 5   | 0   | 0   | 1      | 2        | 0      | 2      | 0      | 2       | 0        | 1      | 0   | 0   | 0   | 0      | 0      | 0  | 0    | 0    | 26  | 1      | 0   | 1   | 0   | RU  |
| SE  | 0   | 0   | 0      | 0      | 0      | 2      | 0        | 2   | 0   | 0   | 2      | 30       | 16     | 2      | 0      | 5       | 4        | 9      | 0   | 0   | 0   | 0      | 1      | 0  | 0    | 0    | 0   | 2      | 0   | 1   | 0   | SE  |
| SI  | 1   | 0   | 131    | 0      | 22     | 3      | 2        | 2   | 4   | 0   | 45     | 81       | 1      | 0      | 5      | 0       | 12       | 4      | 0   | 1   | 128 | 41     | 0      | 0  | 220  | 0    | 0   | 0      | 0   | 0   | 0   | SI  |
| SK  | 1   | 0   | 45     | 0      | 13     | 3      | 5        | 6   | 4   | 0   | 107    | 95       | 3      | 1      | 3      | 1       | 13       | 6      | 0   | 2   | 16  | 187    | 0      | 0  | 17   | 0    | 0   | 2      | 0   | 1   | 1   | SK  |
| ТJ  | 0   | 1   | 0      | 0      | 0      | 0      | 0        | 0   | 0   | 0   | 0      | 0        | 0      | 0      | 0      | 0       | 0        | 0      | 0   | 0   | 0   | 0      | 0      | 0  | 0    | 10   | 12  | 0      | 0   | 0   | 0   | ТJ  |
| ТМ  | 0   | 3   | 0      | 5      | 0      | 0      | 0        | 1   | 0   | 0   | 0      | 1        | 0      | 0      | 0      | 0       | 0        | 0      | 1   | 0   | 0   | 0      | 0      | 0  | 0    | 1    | 43  | 0      | 0   | 0   | 0   | ТМ  |
| TR  | 1   | 8   | 1      | 1      | 2      | 0      | 7        | 1   | 0   | 2   | 1      | 2        | 0      | 0      | 1      | 0       | 1        | 0      | 2   | 7   | 0   | 1      | 0      | 0  | 3    | 0    | 2   | 0      | 0   | 0   | 1   | TR  |
| 114 | 0   | 0   | 3      | 1      | 4      | 1      | . 7      | 28  | 1   | 0   | â      | 20       | 2      | 2      | 1      | 2       | 3        | 3      | 1   | 2   | 1   | 11     | 0      | 0  | 3    | 0    | 7   | 3      | 0   | 2   | 14  | 114 |
| 117 | 0   | 1   | 0      | 2      | ۰<br>۲ | 0      | 0        | 1   | 0   | 0   | 0      | 1        | 0      | 0      | 0      | 0       | 0        | 0      | 1   | 0   | 0   | 0      | 0      | 0  | 0    | 22   | 67  | 0      | 0   | 0   | 14  | 117 |
|     | 0   | 0   | 0      | ے<br>م | 0      | 1      | 0        | 0   | 0   | 0   | 0      | 1        | 0      | 0      | 0      | 0       | 0        | 11     | 0   | 0   | 0   | 0      | 2      | 1  | 0    | - 22 | 07  | 0      | 0   | 0   | 0   |     |
|     | 0   | 0   | U<br>1 | 0      | 0      | 1<br>C | 0        | 0   | 0   | 0   | 0      | 4        | 10     | U<br>o | 9<br>1 | U<br>10 | ŏ        | 11     | 0   | 0   | 0   | 0      | 3      | T  | 1    | 0    | 0   | U<br>A | 0   | 0   | 0   | AIL |
| DAS | 1   | 0   | 1      | 0      | 0      | 0      | 0        | 0   | 0   | 0   | 1      | 90       | 40     | 0      | 1      | 10      | 9        | 22     | 10  | 0   | 1   | 2      | 2      | 0  | 1    | 0    | 0   | 9      | 0   | 0   | 0   | DAS |
| BL2 | 1   | 2   | 1      | 2      | 4      | 0      | 20       | (   | 0   | 0   | 3      | 6        | 0      | 1      | 1      | 1       | 1        | 1      | 10  | 1   | 1   | 4      | 0      | U  | 3    | 0    | 5   | 1      | U   | 0   | 6   | BLS |
| MED | 4   | 0   | 2      | 0      | 16     | - 1    | 8        | 1   | 1   | 2   | 4      | 9        | 0      | 0      | 35     | 0       | 27       | 3      | 0   | 20  | 5   | 2      | 0      | 0  | 77   | 0    | 1   | 0      | 0   | 0   | 0   | MED |
| NOS | 0   | 0   | 1      | 0      | 0      | 24     | 0        | 1   | 1   | 0   | 4      | 95       | 20     | 1      | 5      | 1       | 60       | 146    | 0   | 0   | 0   | 0      | 10     | 1  | 1    | 0    | 0   | 1      | 1   | 1   | 0   | NOS |
| AST | 0   | 2   | 0      | 3      | 0      | 0      | 0        | 0   | 0   | 1   | 0      | 0        | 0      | 0      | 0      | 0       | 0        | 0      | 1   | 1   | 0   | 0      | 0      | 0  | 0    | 1    | 14  | 0      | 0   | 0   | 0   | AST |
| NOA | 1   | 0   | 1      | 0      | 3      | 0      | 2        | 0   | 0   | 0   | 1      | 3        | 0      | 0      | 21     | 0       | 7        | 1      | 0   | 4   | 1   | 0      | 0      | 0  | 12   | 0    | 0   | 0      | 0   | 0   | 0   | NOA |
| EXC | 1   | 2   | 5      | 2      | 4      | 4      | 5        | 7   | 2   | 0   | 8      | 35       | 2      | 1      | 14     | 3       | 23       | 14     | 2   | 3   | 3   | 7      | 2      | 0  | 21   | 3    | 41  | 2      | 0   | 1   | 1   | EXC |
| EU  | 1   | 0   | 18     | 0      | 7      | 18     | 16       | 5   | 6   | 0   | 30     | 132      | 8      | 2      | 58     | 7       | 92       | 55     | 0   | 9   | 9   | 25     | 6      | 0  | 85   | 0    | 0   | 4      | 2   | 3   | 1   | EU  |
|     | AL  | АМ  | AT     | ΑZ     | ΒA     | BE     | BG       | ΒY  | СН  | CY  | CZ     | DE       | DK     | EE     | ES     | FI      | FR       | GB     | GE  | GR  | HR  | ΗU     | IE     | IS | IT   | KG   | ΚZ  | LT     | LU  | LV  | MD  |     |

Table C.13 Cont.: 2016 country-to-country blame matrices for **PM2.5**. Units: ng/m<sup>3</sup> per 15% emis. red. of PPM, SO<sub>x</sub>, NO<sub>x</sub>, NH<sub>3</sub> and VOC. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | ME      | MK     | ΜT  | NL      | NO     | PL       | РΤ  | RO       | RS      | RU       | SE | SI       | SK     | ТJ | ТΜ | TR       | UA       | UZ       | ATL     | BAS | BLS | MED | NOS     | AST    | NOA | BIC      | DMS      | VOL | EXC        | EU         |          |
|----------|---------|--------|-----|---------|--------|----------|-----|----------|---------|----------|----|----------|--------|----|----|----------|----------|----------|---------|-----|-----|-----|---------|--------|-----|----------|----------|-----|------------|------------|----------|
| AL       | 36      | 73     | 0   | 1       | 0      | 19       | 0   | 11       | 162     | 4        | 0  | 1        | 3      | 0  | 0  | 19       | 13       | 0        | 1       | 0   | 0   | 40  | 0       | 2      | 22  | 25       | 5        | 36  | 997        | 165        | AL       |
| AM       | 0       | 0      | 0   | 0       | 0      | 1        | 0   | 1        | 1       | 9        | 0  | 0        | 0      | 0  | 1  | 142      | 4        | 0        | 0       | 0   | 1   | 2   | 0       | 241    | 5   | 28       | 0        | 7   | 650        | 5          | AM       |
| AT       | 1       | 0      | 0   | 6       | 0      | 50       | 0   | 8        | 21      | 3        | 0  | 40       | 12     | 0  | 0  | 3        | 6        | 0        | 1       | 1   | 0   | 6   | 4       | 0      | 4   | 18       | 2        | 4   | 957        | 895        | AT       |
| AZ       | 0       | 0      | 0   | 0       | 0      | 1        | 0   | 1        | 1       | 41       | 0  | 0        | 0      | 0  | 2  | 56       | 13       | 1        | 0       | 0   | 1   | 1   | 0       | 256    | 2   | 20       | 0        | 4   | 484        | 5          | AZ       |
| ΒA       | 25      | 2      | 0   | 2       | 0      | 45       | 0   | 15       | 210     | 5        | 0  | 4        | 11     | 0  | 0  | 9        | 15       | 0        | 1       | 0   | 0   | 14  | 1       | 0      | 14  | 20       | 2        | 13  | 1138       | 291        | BA       |
| BE       | 0       | 0      | 0   | 144     | 3      | 25       | 1   | 1        | 1       | 8        | 3  | 1        | 1      | 0  | 0  | 0        | 2        | 0        | 15      | 4   | 0   | 3   | 83      | 0      | 1   | 47       | 14       | 1   | 1703       | 1674       | BE       |
| BG       | 5       | 18     | 0   | 1       | 0      | 31       | 0   | 100      | 124     | 26       | 1  | 1        | 6      | 0  | 0  | 87       | 79       | 0        | 0       | 1   | 9   | 13  | 1       | 2      | 11  | 23       | 2        | 9   | 1056       | 684        | BG       |
| BY       | 0       | 0      | 0   | 4       | 2      | 143      | 0   | 11       | 6       | 105      | 5  | 0        | 4      | 0  | 0  | 6        | 68       | 0        | 1       | 7   | 1   | 1   | 3       | 1      | 1   | 13       | 3        | 1   | 696        | 277        | BY       |
| СН       | 0       | 0      | 0   | 6       | 0      | 10       | 0   | 0        | 2       | 1        | 0  | 1        | 1      | 0  | 0  | 1        | 1        | 0        | 2       | 0   | 0   | 4   | 4       | 0      | 4   | 17       | 2        | 2   | 844        | 440        | СН       |
| CY       | 1       | 3      | 0   | 0       | 0      | 4        | 0   | 4        | 11      | 14       | 0  | 0        | 0      | 0  | 0  | 905      | 22       | 0        | 0       | 0   | 5   | 107 | 0       | 116    | 47  | 51       | 18       | 27  | 1142       | 175        | CY       |
| C7       | 1       | 1      | 0   | 12      | 1      | 183      | 0   | 12       | 27      | 6        | 2  | 9        | 39     | 0  | 0  | 3        | 12       | 0        | 2       | 2   | 0   | 3   | 7       | 0      | 2   | 21       | 4        | 2   | 1497       | 1425       | C7       |
| DF       | 0       | 0      | 0   | 70      | 3      | 86       | 0   | 2        |         | 8        | 4  | 2        | 4      | 0  | 0  | 1        |          | 0        | - 5     | 12  | 0   | 2   | 40      | 0      | 2   | 32       | 8        | - 1 | 1417       | 1372       | DF       |
| DK       | 0       | 0      | 0   | 50      | 14     | 59       | 0   | -        | 0       | 17       | 25 | 0        | 1      | 0  | 0  | 0        | 4        | 0        | 6       | 59  | 0   | 0   | 68      | 0      | 0   | 23       | 15       | 0   | 874        | 833        | DK       |
| EE       | 0       | 0      | 0   | 4       | 4      | 40       | 0   | 2        | 1       | 67       | 14 | 0        | 1      | 0  | 0  | 1        | 11       | 0        | 1       | 20  | 0   | 0   | 4       | 0      | 0   |          | -0       | 0   | 364        | 265        | EE       |
| ES       | 0       | 0      | 0   | 1       | 0      | 2        | 25  | 0        | 1       | 0        | 0  | 0        | 0      | 0  | 0  | 0        | 0        | 0        | 22      | 0   | 0   | 47  | 2       | 0      | 27  | 25       | 11       | 1   | 498        | 496        | ES       |
| FI       | 0       | 0      | 0   | 2       | 4      | 11       | 0   | 0        | 0       | 44       | 13 | 0        | 0      | 0  | 0  | 0        | 3        | 0        | 2       | 6   | 0   | 0   | 2       | 0      | 0   |          | 7        | 0   | 183        | 127        | FI       |
| FR       | 0       | 0      | 0   | 22      | 1      | 12       | 1   | 0        | 2       | 2        | 1  | 1        | 1      | 0  | 0  | 0        | 1        | 0        | 17      | 1   | 0   | 13  | 32      | 0      | 4   | 22       | 13       | 2   | 896        | 866        | FR       |
| GR       | 0       | 0      | 0   | 20      | 3      | 8        | 1   | 0        | 0       | 4        | 2  | 0        | 0      | 0  | 0  | 0        | 1        | 0        | 27      | 2   | 0   | 10  | 46      | 0      | 1   | 26       | 22       | 0   | 702        | 781        | GR       |
| GE       | 0       | 0      | 0   | 25      | 0      | 1        | 0   | 1        | 1       | 22       | 0  | 0        | 0      | 0  | 1  | 78       | 11       | 0        |         | 0   | 5   | 1   | 0       | 56     | 3   | 1/       | 0        | 5   | 112        | 701        | GE       |
| CL       | 0       | 0      | 0   | 0       | 0      | 0        | 0   | 0        | 0       | - 22     | 0  | 0        | 0      | _0 | _0 | 0        | 11       | _0       | 0       | 0   | 0   | 0   | 0       | _0     | 0   | 6        | 2        | 0   | 0          | 0          |          |
| GE       | 6       | 30     | 0   | 0       | 0      | 16       | 0   | 20       | 61      | 16       | 0  | 1        | 2      | -0 | -0 | 121      | /1       | -0       | 1       | 0   | 1   | 70  | 0       | -0     | 25  | 27       | 2        | 40  | 714        | 201        | GE       |
| ЦΡ       | 7       | 29     | 0   | 3       | 1      | 63       | 0   | 20       | 17/     | 10       | 1  | 12       | 17     | 0  | 0  | 1.51     | 17       | 0        | 1       | 1   | 4   | 27  | 2       | 4      | 12  | 21       | 2        | 10  | 1100       | 916        | цρ       |
| ш        | 1       | л<br>Л | 0   | 1       | 1      | 1/12     | 0   | 120      | 152     | 10       | 1  | 42<br>28 | 07     | 0  | 0  | 9<br>11  | 27       | 0        | 1       | 2   | 1   | 21  | 2       | 0      | 23  | 20       | 2        | 12  | 1706       | 1/27       | ш        |
|          | 4       | 4      | 0   | 4<br>10 | 1      | 142      | 1   | 120      | 152     | 10       | 1  | 20       | 91     | 0  | 0  | 11       | 37       | 0        | 20      | 2   | 1   | 9   | 10      | 0      | 0   | 20       | 2        | 0   | 1700       | 1457       |          |
|          | 0       | 0      | 0   | 12      | 1      | 0        | 1   | 0        | 0       | 2        | 1  | 0        | 0      | 0  | 0  | 0        | 1        | 0        | 2       | 2   | 0   | 0   | 19      | 0      | 0   | 21       | 20<br>15 | 0   | 4/1        | 404        |          |
| IS<br>IT | 2       | 1      | 0   | 1       | 0      | 17       | 1   | 0        | 0       | 0        | 0  | 20       | 0      | 0  | 0  | 0        | 0        | 0        | с<br>С  | 0   | 0   | 0   | 1       | 0      | 20  | /<br>21  | 15       | 42  | 43         | 0          | ы<br>т   |
|          | о<br>0  | 1      | 0   | 2       | 0      | 11       | 1   | о<br>0   | 21      | Э        | 0  | 20       | о<br>О | 7  | 1  | 2        | 2<br>1   | 47       | 2       | 0   | 0   | 00  | 1       | 61     | 50  | 21       | 0        | 43  | 1325       | 1259       |          |
|          | 0       | 0      | 0   | 0       | 0      | 0        | 0   | 0        | 0       | 3<br>111 | 0  | 0        | 0      | 1  | 1  | 4        | 12       | 41       | 0       | 0   | 0   | 0   | 0       | 57     | 0   | 21       | 0        | 2   | 220        | 1          |          |
| ΝZ       | 0       | 0      | 0   | 0       | 0      | 166      | 0   | 0        | 0       | 111      | 10 | 1        | 0      | 1  | 2  | 3        | 13       | ð<br>0   | 1       | 17  | 0   | 0   | 0       | 57     | 0   | 3U       | 0        | 1   | 545        | 400        | NZ<br>LT |
|          | 0       | 0      | 0   | ()      | 3      | 100      | 1   | 1        | 4       | 09       | 10 | 1        | 4      | 0  | 0  | 2        | 29       | 0        | 1       | 17  | 0   | 0   | 0       | 0      | 0   | 13       | 0        | 1   | 1450       | 480        |          |
|          | 0       | 0      | 0   | 03      | 1      | 31       | 1   | 1        | 3       | 5        | 11 | 1        | 2      | 0  | 0  | 1        | 10       | 0        | 9       | 16  | 0   | 3   | 34<br>F | 0      | 2   | 32       | 9        | 1   | 1458       | 1433       |          |
|          | 0       | 0      | 0   | 5<br>1  | 3<br>1 | 101      | 0   | 3<br>101 | 2       | 03       | 11 | 1        | 2      | 0  | 0  | 41       | 13       | 0        | 1       | 10  | 10  | 0   | 5       | 1      | 0   | 10       | 0        | 0   | 491        | 400        |          |
|          | 207     | 2      | 0   | 1       | 1      | 101      | 0   | 191      | 23      | 02       | 2  | 1        | ð      | 0  | 0  | 41       | 12       | 0        | 1       | 2   | 10  | 4   | 1       | 1      | 16  | 10       | 2        | 4   | 770        | 400        |          |
|          | 307     | 400    | 0   | 1       | 0      | 22       | 0   | 9        | 100     | 4        | 0  | 1        | 4      | 0  | 0  | 12       | 12       | 0        | 1       | 0   | 1   | 19  | 0       | 1      | 10  | 20       | 2        | 19  | 1000       | 131        |          |
|          | 9       | 400    | 206 | 1       | 0      | 24       | 0   | 21       | 199     | 0        | 0  | 1        | 5<br>1 | 0  | 0  | 41       | 21       | 0        | 1       | 0   | 1   | 202 | 1       | 1      | 15  | 20       | 2        | 10  | 1000       | 240<br>407 |          |
|          | 4       | 2      | 200 | 105     | 0      | 0<br>20  | 2   | 4        | 20      | 11       | 0  | 1        | 1      | 0  | 0  | 15       | 4        | 0        | 3<br>16 | 10  | 0   | 323 | 142     | 1      | 114 | 39       | 28       | 81  | 4/2        | 407        |          |
| INL NO   | 0       | 0      | 0   | 485     | 5      | 39       | 1   | 1        | 1       | 11       | 5  | 1        | 2      | -0 | 0  | 0        | 3        | 0        | 10      | 12  | 0   | 2   | 143     | 0      | 2   | 5/       | 10       | 1   | 1084       | 1050       | NL NO    |
|          | 1       | 1      | 0   | 3<br>11 | 48     | 5<br>720 | 0   | 16       | 14      | 9        | 4  | 0        | 0      | 0  | 0  | 0        | 25       | 0        | 4       | 11  | 0   | 1   | 0       | 0      | 1   | 10       | 14       | 0   | 101        | 42         | NU       |
|          | 1       | 1      | 0   | 11      | 2      | 139      | 202 | 10       | 14      | 29       | 5  | 2        | 28     | 0  | 0  | 3        | 35       | 0        | 2       | 11  | 0   | 14  | 0<br>1  | 0      | 10  | 19       | 5<br>10  | 2   | 1254       | 114Z       |          |
|          | 0       | 0      | 0   | 1       | 1      | 1        | 302 | 0        | 0       | 0        | 1  | 0        | 14     | 0  | 0  | 20       | 07       | 0        | 5/      | 1   | 0   | 14  | 1       | 1      | 19  | 25       | 19       | 1   | 1166       | 510        |          |
|          | 20      | 10     | 0   | 2       | 1      | 62       | 0   | 021      | 92      | 20       | 1  | 2        | 14     | 0  | 0  | 3U<br>01 | 01       | 0        | 1       | 1   | 1   | 5   | 1       | 1      | 10  | 20       | 1        | 12  | 100        | 000        |          |
| кэ       | 52<br>0 | 40     | 0   | 2       | 1      | 03       | 0   | 09       | 109     | 11       | 1  | 4        | 19     | 0  | 0  | 21       | 32<br>01 | 0        | 1       | 1   | 1   | 9   | 2       | 1<br>E | 12  | 20<br>52 | 2        | 15  | 205        | 4/4        | кэ<br>DU |
| κυ<br>ce | 0       | 0      | 0   | U<br>F  | 12     | 17       | 0   | 1        | 1       | 223      | 12 | 0        | 0      | 0  | 0  | о<br>О   | 21       | 0        | 2       | 10  | 0   | 0   | 0       | 5      | 0   | 55       | 4        | 0   | 305<br>174 | 21         | KU<br>CE |
| SE       | 1       | 1      | 0   | 5       | 12     | 11       | 0   | 14       | 0       | 14       | 45 | 0        | 0      | 0  | 0  | 0        | 3<br>10  | 0        | 3<br>1  | 10  | 0   | 0   | 1       | 0      | 10  | 0        | 0        | 0   | 1/4        | 141        | SE<br>CI |
| 21       | 1       | 1      | 0   | 4       | 1      | 48       | 0   | 14       | 50      | 4        | 1  | 10       | 400    | 0  | 0  | 5<br>7   | 10       | 0        | 1       | 1   | 0   | 21  | 2       | 0      | 10  | 20       | 3        | ð   | 1411       | 1311       | 21       |
| 5N<br>TI | 2       | 2      | 0   | 4       | 1      | 207      | 0   | 54       | 50      | ŏ<br>r   | 1  | 10       | 428    | 70 | 0  | 7        | 30       | 20       | 1       | 1   | 0   | 5   | 2       | 0      | 4   | 19       | 2        | 4   | 1539       | 1210       | SN<br>TI |
|          | 0       | 0      | 0   | 0       | 0      | 1        | 0   | 0        | 0       | 5<br>4 F | 0  | 0        | 0      | 12 | 0  | 16       | 12       | 39       | 0       | 0   | 0   | 0   | 0       | 107    | 1   | 34       | 0        | 2   | 153        | 1          |          |
|          | 1       | 0      | 0   | 0       | 0      | 1        | 0   | 0        | 0       | 45       | 0  | 0        | 1      | 3  | 49 | 10       | 13       | 17       | 0       | 0   | 0   | 0   | 0       | 197    | 1   | 39       | 0        | 15  | 202        | 5          |          |
|          | 1       | 2      | 0   | 1       | 1      | 5        | 0   | 1        | 9<br>11 | 10       | 0  | 1        | 1      | 0  | 0  | 923      | 23       | 0        | 1       | 0   | 1   | 24  | 1       | 112    | 15  | 38       | 3        | 15  | 1035       | 42         |          |
| UA       | 1       | 1      | 0   | 1       | 1      | 88       | 0   | 43       | 11      | 117      | 2  | 1        | 1      | 10 | 14 | 30       | 410      | U<br>110 | 1       | 2   | 0   | 3   | 1       | 3      | 3   | 20       | 2        | 3   | 843<br>211 | 217        | UA       |
| UZ<br>م  | 0       | 0      | 0   | 0       | 0      | 2        | 0   | 0        | 1       | 54<br>-7 | U  | 0        | 0      | 10 | 14 | 9        | 12       | 112      | 0       | 0   | 0   | 0   | 0       | ٥٢     | 1   | 35<br>27 | 0        | 2   | 311        | 6          | υZ<br>4  |
| AIL      | 0       | 0      | 0   | 1       | 1      | 1        | 4   | 0        | 0       | 1        | 0  | U        | 0      | 0  | 0  | 0        | 0        | 0        | 21      | 0   | Ű   | 2   | 2       | 0      | 4   | 31       | 34       | 0   | 54         | 43         |          |
| BA2      | 0       | 0      | 0   | 10      | 6      | /6       | 0   | 2        | 1       | 29       | 33 | 0        | 1      | U  | 0  | 0        | 150      | 0        | 2       | 34  | 0   | 0   | 15      | 0      | 0   | 10       | 10       | 0   | 413        | 300        | BA2      |
| RE2      | 1       | 2      | 0   | 0       | 0      | 21       | 0   | 44       | 10      | 94       | 0  | 0        | 2      | 0  | 0  | 234      | 128      | 0        | 0       | 0   | 46  | 11  | 0       | 9      | 6   | 15       | 1        | 6   | 666        | 119        | BL2      |
| MED      | 5       | 4      | 1   | 1       | 0      | 10       | 2   | 6        | 25      | 7        | 0  | 2        | 1      | 0  | 0  | 188      | 15       | 0        | 5       | 0   | 3   | 198 | 1       | 31     | 83  | 36       | 23       | /8  | 486        | 217        | MED      |
| NOS      | 0       | 0      | 0   | 48      | 11     | 17       | 0   | 0        | 0       | 5        | 4  | 0        | 0      | 0  | 0  | 0        | 2        | 0        | 13      | 6   | 0   | 1   | 45      | 0      | 0   | 15       | 25       | 0   | 460        | 439        | NUS      |
| AST      | 0       | 0      | 0   | 0       | 0      | 1        | 0   | 0        | 1       | 12       | 0  | 0        | 0      | 1  | 3  | 58       | 4        | 2        | 0       | 0   | 0   | 4   | 0       | 804    | 7   | 162      | 1        | 5   | 107        | 5          | AST      |
| NOA      | 1       | 1      | 0   | 0       | 0      | 2        | 4   | 1        | 5       | 1        | 0  | 0        | 0      | 0  | 0  | 29       | 3        | 0        | 11      | 0   | 0   | 54  | 0       | 10     | 275 | 112      | 11       | 28  | 108        | 63         | NOA      |
| EXC      | 1       | 2      | 0   | 5       | 2      | 29       | 2   | 13       | 11      | 117      | 2  | 2        | 3      | 1  | 2  | 46       | 30       | 5        | 3       | 2   | 1   | 6   | 4       | 26     | 3   | 35       | 4        | 3   | 491        | 208        | EXC      |
| ΕU       | 1       | 2      | 0   | 19      | 3      | 86       | 10  | 43       | 21      | 14       | 7  | 7        | 12     | 0  | 0  | 11       | 15       | 0        | 10      | 5   | 1   | 18  | 15      | 1      | 8   | 21       | 9        | 6   | 850        | 763        | ΕU       |
|          | ME      | MK     | ΜT  | NL      | NO     | ۲L       | ۲Y  | RO       | RS      | RU       | SE | SI       | SK     | ΤJ | IM | TR       | UA       | UΖ       | ATL     | BAS | BLS | MED | NOS     | AST    | NOA | RIC      | DMS      | VOL | ЕХС        | EU         |          |

Table C.14: 2016 country-to-country blame matrices for **fine EC**. Units: 0.1 ng/m<sup>3</sup> per 15% emis. red. of PPM. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|     | AL  | AM | AT  | ΑZ | BA  | BE  | BG  | ΒY  | СН  | CY | CZ  | DE      | DK  | EE | ES  | FI | FR  | GΒ  | GE  | GR  | HR  | ΗU  | IE  | IS | IT     | KG | ΚZ | LT | LU  | LV   | MD  |     |
|-----|-----|----|-----|----|-----|-----|-----|-----|-----|----|-----|---------|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|--------|----|----|----|-----|------|-----|-----|
| AL  | 621 | 0  | 2   | 0  | 3   | 0   | 4   | 0   | 0   | 0  | 2   | 2       | 0   | 0  | 1   | 0  | 2   | 0   | 0   | 10  | 4   | 4   | 0   | 0  | 15     | 0  | 0  | 0  | 0   | 0    | 0   | AL  |
| AM  | 0   | 51 | 0   | 5  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 9   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 1  | 0  | 0   | 0    | 0   | AM  |
| AT  | 0   | 0  | 350 | 0  | 1   | 1   | 0   | 1   | 4   | 0  | 25  | 43      | 0   | 0  | 1   | 0  | 8   | 2   | 0   | 0   | 12  | 21  | 0   | 0  | 18     | 0  | 0  | 0  | 0   | 0    | 0   | AT  |
| AZ  | 0   | 4  | 0   | 49 | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 26  | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 2  | 0  | 0   | 0    | 0   | AZ  |
| BA  | 3   | 0  | 6   | 0  | 223 | 0   | 1   | 1   | 0   | 0  | 7   | 5       | 0   | 0  | 1   | 0  | 3   | 1   | 0   | 1   | 51  | 18  | 0   | 0  | 15     | 0  | 0  | 0  | 0   | 0    | 0   | BA  |
| BE  | 0   | 0  | 2   | 0  | 0   | 539 | 0   | 0   | 1   | 0  | 3   | 74      | 1   | 0  | 2   | 0  | 159 | 30  | 0   | 0   | 0   | 0   | 1   | 0  | 2      | 0  | 0  | 0  | 10  | 0    | 0   | BE  |
| BG  | 3   | 0  | 3   | 0  | 2   | 0   | 361 | 2   | 0   | 0  | 3   | 2       | 0   | 0  | 1   | 0  | 1   | 0   | 0   | 9   | 3   | 8   | 0   | 0  | 3      | 0  | 0  | 0  | 0   | 0    | 2   | BG  |
| BY  | 0   | 0  | 1   | 0  | 0   | 1   | 0   | 218 | 0   | 0  | 3   | 5       | 1   | 1  | 0   | 2  | 1   | 1   | 0   | 0   | 0   | 3   | 0   | 0  | 1      | 0  | 0  | 6  | 0   | 4    | 1   | BY  |
| СН  | 0   | 0  | 11  | 0  | 0   | 1   | 0   | 0   | 246 | 0  | 2   | 49      | 0   | 0  | 1   | 0  | 64  | 1   | 0   | 0   | 0   | 0   | 0   | 0  | 34     | 0  | 0  | 0  | 0   | 0    | 0   | СН  |
| CY  | 1   | 0  |     | 0  | 0   | 0   | 1   | 0   | 0   | 82 | 0   | 0       | 0   | 0  | 1   | 0  | 1   | 0   | 0   | 4   | 0   | 0   | 0   | 0  | 2      | 0  | 0  | 0  | 0   | 0    | 0   | CY  |
| C7  | 0   | 0  | 28  | 0  | 1   | 2   | 1   | 1   | 2   | 0  | 526 | 61      | 1   | 0  | 1   | 0  | 14  | 3   | 0   | 0   | 6   | 27  | 0   | 0  | 4      | 0  | 0  | 0  | 0   | 0    | 0   | C7  |
|     | 0   | 0  | 17  | 0  | 0   | 13  | 0   | 1   | 5   | 0  | 220 | 378     | 2   | 0  | 1   | 0  | 13  | 10  | 0   | 0   | 1   | 21  | 1   | 0  | 2      | 0  | 0  | 0  | 2   | 0    | 0   |     |
|     | 0   | 0  | -17 | 0  | 0   | 15  | 0   | 1   | 0   | 0  | 20  | 210     | 103 | 0  | 1   | 1  | -5  | 15  | 0   | 0   | 1   | 1   | 1   | 0  | 0      | 0  | 0  | 1  | 0   | 1    | 0   | DK  |
| FF  | 0   | 0  | 0   | 0  | 0   | -   | 0   | 6   | 0   | 0  | 1   | 20      | 2 2 | 57 | 0   | 12 | 1   | 2   | 0   | 0   | 0   | 1   | 0   | 0  | 0      | 0  | 0  | 2  | 0   | 11   | 0   | FF  |
| FS  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 1       | 0   | 0  | 256 | 12 | 12  | 1   | 0   | 0   | 0   | 0   | 0   | 0  | 2      | 0  | 0  | 0  | 0   | 0    | 0   | FS  |
| EI  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 1   | 0   | 0  | 0   | 1       | 1   | 1  | 230 | 68 | 12  | 1   | 0   | 0   | 0   | 0   | 0   | 0  | ے<br>م | 0  | 0  | 0  | 0   | 1    | 0   | EI  |
|     | 0   | 0  | 1   | 0  | 0   | 0   | 0   | 1   | 5   | 0  | 0   | 1<br>12 | 1   | 1  | 0   | 00 | 420 | 10  | 0   | 0   | 0   | 0   | 1   | 0  | 10     | 0  | 0  | 0  | 0   | 1    | 0   |     |
|     | 0   | 0  | 1   | 0  | 0   | 9   | 0   | 0   | 0   | 0  | 2   | 23      | 1   | 0  | 0   | 0  | 439 | 276 | 0   | 0   | 0   | 0   | 1   | 0  | 10     | 0  | 0  | 0  | 2   | 0    | 0   |     |
| GB  | 0   | 0  | 0   | 0  | 0   | 3   | 0   | 0   | 0   | 0  | 0   | 5       | 1   | 0  | 2   | 0  | 15  | 3/0 | 10  | 0   | 0   | 0   | 1   | 0  | 1      | 0  | 0  | 0  | 0   | 0    | 0   | GB  |
| GE  | 0   | 5  | 0   | 4  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 108 | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | GE  |
| GL  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | GL  |
| GR  | 12  | 0  | 1   | 0  | 1   | 0   | 13  | 1   | 0   | 0  | 1   | 1       | 0   | 0  | 1   | 0  | 1   | 0   | 0   | 148 | 2   | 3   | 0   | 0  | 9      | 0  | 0  | 0  | 0   | 0    | 1   | GR  |
| нк  | 2   | 0  | 18  | 0  | 43  | 1   | 2   | 1   | 0   | 0  | 15  | 9       | 0   | 0  | 2   | 0  | 4   | 1   | 0   | 1   | 454 | 47  | 0   | 0  | 31     | 0  | 0  | 0  | 0   | 0    | 0   | нк  |
| HU  | 1   | 0  | 32  | 0  | 5   | 1   | 4   | 2   | 1   | 0  | 25  | 14      | 1   | 0  | 1   | 0  | 5   | 1   | 0   | 1   | 59  | 588 | 0   | 0  | 13     | 0  | 0  | 0  | 0   | 0    | 0   | HU  |
| IE  | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 0   | 0   | 0  | 0   | 2       | 0   | 0  | 1   | 0  | 5   | 37  | 0   | 0   | 0   | 0   | 137 | 0  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | IE  |
| IS  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | -0 | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 8  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | IS  |
| П   | 1   | 0  | 7   | 0  | 1   | 0   | 0   | 0   | 3   | 0  | 2   | 4       | 0   | 0  | 5   | 0  | 16  | 1   | 0   | 0   | 7   | 3   | 0   | 0  | 789    | 0  | 0  | 0  | 0   | 0    | 0   | П   |
| KG  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 66 | 8  | 0  | 0   | 0    | 0   | KG  |
| ΚZ  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 2  | 65 | 0  | 0   | 0    | 0   | ΚZ  |
| LT  | 0   | 0  | 1   | 0  | 0   | 1   | 0   | 30  | 0   | 0  | 4   | 7       | 3   | 1  | 0   | 2  | 2   | 3   | 0   | 0   | 1   | 2   | 0   | 0  | 1      | 0  | 0  | 82 | 0   | 13   | 1   | LT  |
| LU  | 0   | 0  | 4   | 0  | 0   | 71  | 0   | 0   | 2   | 0  | 6   | 141     | 1   | 0  | 1   | 0  | 174 | 15  | 0   | 0   | 0   | 1   | 1   | 0  | 3      | 0  | 0  | 0  | 289 | 0    | 0   | LU  |
| LV  | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 16  | 0   | 0  | 2   | 4       | 3   | 5  | 0   | 4  | 1   | 3   | 0   | 0   | 0   | 1   | 0   | 0  | 0      | 0  | 0  | 12 | 0   | 100  | 0   | LV  |
| MD  | 0   | 0  | 2   | 0  | 1   | 0   | 3   | 7   | 0   | 0  | 3   | 3       | 0   | 0  | 0   | 0  | 1   | 1   | 0   | 1   | 1   | 6   | 0   | 0  | 2      | 0  | 0  | 1  | 0   | 0    | 208 | MD  |
| ME  | 44  | 0  | 2   | 0  | 13  | 0   | 2   | 1   | 0   | 0  | 2   | 2       | 0   | 0  | 1   | 0  | 2   | 0   | 0   | 1   | 6   | 6   | 0   | 0  | 11     | 0  | 0  | 0  | 0   | 0    | 0   | ME  |
| MK  | 45  | 0  | 2   | 0  | 2   | 0   | 20  | 1   | 0   | 0  | 3   | 2       | 0   | 0  | 1   | 0  | 1   | 0   | 0   | 24  | 3   | 7   | 0   | 0  | 6      | 0  | 0  | 0  | 0   | 0    | 0   | MK  |
| ΜT  | 1   | 0  | 1   | 0  | 1   | 0   | 0   | 0   | 0   | 0  | 1   | 1       | 0   | 0  | 8   | 0  | 13  | 1   | 0   | 1   | 2   | 1   | 0   | 0  | 43     | 0  | 0  | 0  | 0   | 0    | 0   | МΤ  |
| NL  | 0   | 0  | 1   | 0  | 0   | 107 | 0   | 1   | 1   | 0  | 4   | 111     | 2   | 0  | 1   | 0  | 52  | 36  | 0   | 0   | 0   | 1   | 2   | 0  | 1      | 0  | 0  | 0  | 1   | 0    | 0   | NL  |
| NO  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 1       | 1   | 0  | 0   | 1  | 1   | 1   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | NO  |
| ΡL  | 0   | 0  | 3   | 0  | 0   | 2   | 1   | 10  | 0   | 0  | 31  | 28      | 3   | 0  | 0   | 1  | 6   | 3   | 0   | 0   | 2   | 12  | 0   | 0  | 2      | 0  | 0  | 2  | 0   | 1    | 1   | ΡL  |
| ΡT  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 1       | 0   | 0  | 79  | 0  | 5   | 1   | 0   | 0   | 0   | 0   | 0   | 0  | 1      | 0  | 0  | 0  | 0   | 0    | 0   | ΡT  |
| RO  | 1   | 0  | 3   | 0  | 2   | 0   | 11  | 3   | 0   | 0  | 4   | 4       | 0   | 0  | 1   | 0  | 2   | 0   | 0   | 1   | 5   | 26  | 0   | 0  | 4      | 0  | 0  | 0  | 0   | 0    | 6   | RO  |
| RS  | 13  | 0  | 7   | 0  | 14  | 0   | 32  | 1   | 0   | 0  | 8   | 5       | 0   | 0  | 1   | 0  | 2   | 1   | 0   | 3   | 27  | 42  | 0   | 0  | 7      | 0  | 0  | 0  | 0   | 0    | 0   | RS  |
| RU  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 2   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 1  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 5  | 0  | 0   | 0    | 0   | RU  |
| SE  | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 1   | 0   | 0  | 1   | 3       | 5   | 0  | 0   | 2  | 1   | 2   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 0  | 0  | 0   | 1    | 0   | SE  |
| SI  | 0   | 0  | 72  | 0  | 2   | 1   | 0   | 1   | 1   | 0  | 12  | 12      | 0   | 0  | 1   | 0  | 4   | 1   | 0   | 0   | 122 | 22  | 0   | 0  | 81     | 0  | 0  | 0  | 0   | 0    | 0   | SI  |
| SK  | 0   | 0  | 19  | 0  | 1   | 1   | 2   | 2   | 1   | 0  | 44  | 15      | 1   | 0  | 1   | 0  | 5   | 1   | 0   | 0   | 10  | 127 | 0   | 0  | 5      | 0  | 0  | 0  | 0   | 0    | 0   | SK  |
| ТJ  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 2  | 2  | 0  | 0   | 0    | 0   | ТJ  |
| ТМ  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 5  | 0  | 0   | 0    | 0   | ТМ  |
| TR  | 0   | 1  | 0   | 0  | 0   | 0   | 2   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0  | 1      | 0  | 0  | 0  | 0   | 0    | 0   | TR  |
| UA  | 0   | 0  | 1   | 0  | 0   | 0   | 1   | 12  | 0   | 0  | 3   | 3       | 0   | 0  | 0   | 1  | 1   | 1   | 0   | 0   | 1   | 6   | 0   | 0  | 1      | 0  | 1  | 1  | 0   | 1    | 7   | UA  |
| UZ  | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 6  | 12 | 0  | 0   | 0    | 0   | UZ  |
| ATL | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 1       | 0   | 0  | 4   | 0  | 3   | 3   | 0   | 0   | 0   | 0   | 1   | 0  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | ATL |
| BAS | 0   | 0  | 0   | 0  | 0   | 1   | 0   | 3   | 0   | 0  | 3   | 13      | 15  | 3  | 0   | 10 | 3   | 5   | 0   | 0   | 0   | 1   | 0   | 0  | 0      | 0  | 0  | 2  | 0   | 4    | 0   | BAS |
| BLS | 0   | 0  | 1   | 0  | 0   | 0   | 5   | 3   | 0   | 0  | 1   | 1       | 0   | 0  | 0   | 0  | 1   | 0   | 8   | 2   | 1   | 2   | 0   | 0  | 1      | 0  | 1  | 0  | 0   | 0    | 3   | BLS |
| MED | 4   | 0  | 1   | 0  | 1   | 0   | 2   | 0   | 0   | 0  | 1   | 2       | 0   | 0  | 16  | 0  | 18  | 1   | 0   | 8   | 4   | 2   | 0   | 0  | 44     | 0  | 0  | 0  | 0   | 0    | 0   | MED |
| NOS | 0   | 0  | 0   | 0  | 0   | 6   | 0   | 0   | 0   | 0  | 1   | 11      | 4   | 0  | 1   | 0  | 19  | 45  | 0   | 0   | 0   | 0   | 2   | 0  | 0      | 0  | 0  | 0  | 0   | 0    | 0   | NOS |
| AST | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0      | 0  | 3  | 0  | 0   | 0    | 0   | AST |
| NOA | 0   | 0  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0   | 0       | 0   | 0  | 7   | 0  | 4   | 0   | 0   | 1   | 0   | 0   | 0   | 0  | 4      | 0  | 0  | 0  | 0   | 0    | 0   | NOA |
| EXC | 1   | 0  | 3   | 0  | 1   | 2   | 3   | 4   | 1   | 0  | 4   | 10      | 1   | 0  | 8   | 2  | 16  | 6   | 1   | 1   | 3   | 5   | 1   | 0  | 14     | 1  | 12 | 1  | 0   | 1    | 1   | EXC |
| EU  | 1   | 0  | 11  | 0  | 1   | 8   | 11  | 2   | 1   | 0  | 16  | 42      | 3   | 1  | 33  | 6  | 65  | 26  | 0   | 5   | 9   | 19  | 3   | 0  | 59     | 0  | 0  | 2  | 1   | 2    | 1   | EU  |
|     | AL  | AM | AT  | ΑZ | ΒA  | ΒE  | BG  | ΒY  | СН  | CY | CZ  | DE      | DK  | EE | ES  | F١ | FR  | GB  | GE  | GR  | HR  | ΗU  | IE  | IS | IT     | KG | ΚZ | LT | LU  | LV I | MD  |     |

Table C.14 Cont.: 2016 country-to-country blame matrices for **fine EC**. Units: 0.1 ng/m<sup>3</sup> per 15% emis. red. of PPM. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|           | ME  | MK  | МΤ  | NL  | NO | PL      | ΡT  | RO  | RS  | RU | SE | SI  | SK  | ТJ | ТМ | TR       | UA      | UZ | ATL | BAS | BLS | MED | NOS | AST      | NOA | BIC | DMS | VOL | EXC | EU  |     |
|-----------|-----|-----|-----|-----|----|---------|-----|-----|-----|----|----|-----|-----|----|----|----------|---------|----|-----|-----|-----|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|
| AL        | 13  | 34  | 0   | 0   | 0  | 3       | 0   | 3   | 50  | 0  | 0  | 1   | 1   | 0  | 0  | 2        | 1       | 0  | 0   | 0   | 0   | 8   | 0   | 0        | 2   | 0   | 0   | 0   | 778 | 54  | AL  |
| AM        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 37       | 0       | 0  | 0   | 0   | 0   | 0   | 0   | 13       | 0   | 0   | 0   | 0   | 104 | 1   | AM  |
| AT        | 0   | 0   | 0   | 1   | 0  | 8       | 0   | 3   | 2   | 0  | 0  | 21  | 4   | 0  | 0  | 0        | 0       | 0  | 0   | 0   | 0   | 1   | 0   | 0        | 0   | 0   | 0   | 0   | 527 | 519 | AT  |
| AZ        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 3  | 0  | 0   | 0   | 0  | 0  | 11       | 0       | 0  | 0   | 0   | 0   | 0   | 0   | 16       | 0   | 0   | 0   | 0   | 96  | 1   | AZ  |
| BA        | 7   | 0   | 0   | 0   | 0  | 9       | 0   | 5   | 33  | 0  | 0  | 2   | 3   | 0  | 0  | 1        | 1       | 0  | 0   | 0   | 0   | 3   | 0   | 0        | 1   | 0   | 0   | 0   | 399 | 129 | BA  |
| BE        | 0   | 0   | 0   | 33  | 0  | 3       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 2   | 0   | 0   | 0   | 27  | 0        | 0   | 0   | 0   | 0   | 864 | 862 | BE  |
| BG        | 0   | 0   | 0   | 0   | 0  | 5       | 0   | 49  | 29  | 11 | 1  | 1   | 2   | 0  | 0  | 21       | 5       | 0  | 0   | 1   | 2   | 3   | 1   | 0        | 1   | 0   | 0   | 0   | 525 | 453 | BG  |
| БТ        | 0   | 0   | 0   | 0   | 0  | 38      | 0   | 0   | 1   | 11 | 1  | 0   | 2   | 0  | 0  | 1        | 9       | 0  | 0   | 1   | 0   | 1   | 1   | 0        | 0   | 0   | 0   | 0   | 318 | 166 | БТ  |
| СП        | 0   | 1   | 0   | 0   | 0  | 1       | 0   | 1   | 1   | 1  | 0  | 0   | 0   | 0  | 0  | 0<br>80  | 1       | 0  | 0   | 0   | 1   | 26  | 0   | 13       | 5   | 0   | 0   | 0   | 170 | 100 | СП  |
| C7        | 0   | 0   | 0   | 1   | 0  | 50      | 0   | 4   | 3   | 1  | 0  | 3   | 15  | 0  | 0  | 00       | 1       | 0  | 0   | 0   | 0   | 20  | 1   | 13       | 0   | 0   | 0   | 0   | 768 | 758 | C7  |
|           | 0   | 0   | 0   | 10  | 0  | 22      | 0   | 1   | 0   | 1  | 1  | 1   | 13  | 0  | 0  | 0        | 0       | 0  | 1   | 1   | 0   | 0   | 6   | 0        | 0   | 0   | 0   | 0   | 541 | 533 | DE  |
| DK        | 0   | 0   | 0   | 4   | 3  | 13      | 0   | 0   | 0   | 2  | 9  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 1   | 11  | 0   | 0   | 9   | 0        | 0   | 0   | 0   | 0   | 287 | 281 | DK  |
| EE        | 0   | 0   | 0   | 0   | 1  | -0      | 0   | 1   | 0   | 8  | 4  | 0   | 0   | 0  | 0  | 0        | 1       | 0  | 0   | 7   | 0   | 0   | 1   | 0        | 0   | 0   | 0   | 0   | 126 | 109 | EE  |
| ES        | 0   | 0   | 0   | 0   | 0  | 0       | 11  | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 4   | 0   | 0   | 10  | 0   | 0        | 3   | 0   | 0   | 0   | 286 | 286 | ES  |
| FI        | 0   | 0   | 0   | 0   | 1  | 2       | 0   | 0   | 0   | 4  | 5  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 0   | 2   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 89  | 82  | FI  |
| FR        | 0   | 0   | 0   | 2   | 0  | 2       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 3   | 0   | 0   | 3   | 4   | 0        | 0   | 0   | 0   | 0   | 518 | 513 | FR  |
| GB        | 0   | 0   | 0   | 2   | 0  | 1       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 6   | 0   | 0   | 0   | 9   | 0        | 0   | 0   | 0   | 0   | 416 | 415 | GB  |
| GE        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 2  | 0  | 0   | 0   | 0  | 0  | 19       | 0       | 0  | 0   | 0   | 1   | 0   | 0   | 2        | 0   | 0   | 0   | 0   | 201 | 1   | GE  |
| GL        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 0   | 0   | GL  |
| GR        | 1   | 15  | 0   | 0   | 0  | 2       | 0   | 7   | 11  | 1  | 0  | 0   | 1   | 0  | 0  | 24       | 2       | 0  | 0   | 0   | 1   | 22  | 0   | 0        | 3   | 0   | 0   | 0   | 262 | 193 | GR  |
| HR        | 2   | 1   | 0   | 0   | 0  | 11      | 0   | 8   | 31  | 0  | 0  | 28  | 4   | 0  | 0  | 1        | 1       | 0  | 0   | 0   | 0   | 7   | 0   | 0        | 1   | 0   | 0   | 0   | 726 | 643 | HR  |
| HU        | 0   | 1   | 0   | 0   | 0  | 29      | 0   | 62  | 34  | 1  | 0  | 14  | 38  | 0  | 0  | 1        | 5       | 0  | 0   | 0   | 0   | 1   | 0   | 0        | 1   | 0   | 0   | 0   | 940 | 887 | HU  |
| IE        | 0   | 0   | 0   | 1   | 0  | 1       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 6   | 0   | 0   | 0   | 2   | 0        | 0   | 0   | 0   | 0   | 187 | 186 | IE  |
| IS        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 1   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 10  | 2   | IS  |
| IT        | 0   | 0   | 0   | 0   | 0  | 2       | 0   | 1   | 1   | 0  | 0  | 8   | 1   | 0  | 0  | 0        | 0       | 0  | 0   | 0   | 0   | 19  | 0   | 0        | 4   | 0   | 0   | 0   | 854 | 846 | IT  |
| KG        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 0  | 0  | 0   | 0   | 1  | 0  | 0        | 0       | 6  | 0   | 0   | 0   | 0   | 0   | 12       | 0   | 0   | 0   | 0   | 82  | 0   | KG  |
| KZ        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 12 | 0  | 0   | 1   | 0  | 0  | 0        | 1       | 1  | 0   | 0   | 0   | 0   | 0   | 9        | 0   | 0   | 0   | 0   | 207 | 170 | KZ  |
|           | 0   | 0   | 0   | 1   | 1  | 47      | 0   | 3   | 1   | 13 | 3  | 0   | 1   | 0  | 0  | 0        | 3       | 0  | 1   | 3   | 0   | 0   | 1   | 0        | 0   | 0   | 0   | 0   | 227 | 1/8 |     |
|           | 0   | 0   | 0   | 1   | 1  | 5<br>10 | 0   | 2   | 0   | 0  | 1  | 0   | 1   | 0  | 0  | 0        | 2       | 0  | 1   | 0   | 0   | 0   | 4   | 0        | 0   | 0   | 0   | 0   | 102 | 164 |     |
| MD        | 0   | 0   | 0   | 0   | 0  | 22      | 0   | 128 | 3   | 5  | 4  | 0   | 2   | 0  | 0  | 7        | 2<br>36 | 0  | 0   | 4   | 2   | 1   | 0   | 0        | 0   | 0   | 0   | 0   | 446 | 180 | MD  |
| ME        | 234 | 2   | 0   | 0   | 0  | 4       | 0   | 3   | 42  | 0  | 0  | 1   | 1   | 0  | 0  | 1        | 1       | 0  | 0   | 0   | 0   | 6   | 0   | 0        | 1   | 0   | 0   | 0   | 383 | 45  | ME  |
| MK        | 1   | 496 | 0   | 0   | 0  | 4       | 0   | 7   | 67  | 1  | 0  | 1   | 1   | 0  | 0  | 4        | 1       | 0  | 0   | 0   | 0   | 3   | 0   | 0        | 1   | 0   | 0   | 0   | 700 | 82  | MK  |
| MT        | 0   | 0   | 392 | 0   | 0  | 1       | 1   | 1   | 1   | 0  | 0  | 1   | 0   | 0  | 0  | 1        | 0       | 0  | 0   | 0   | 0   | 171 | 0   | 0        | 23  | 0   | 0   | 0   | 475 | 468 | ΜТ  |
| NL        | 0   | 0   | 0   | 291 | 0  | 5       | 0   | 0   | 0   | 1  | 1  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 2   | 1   | 0   | 0   | 45  | 0        | 0   | 0   | 0   | 0   | 621 | 619 | NL  |
| NO        | 0   | 0   | 0   | 0   | 29 | 1       | 0   | 0   | 0   | 1  | 2  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 2   | 0   | 0   | 0   | 2   | 0        | 0   | 0   | 0   | 0   | 39  | 9   | NO  |
| PL        | 0   | 0   | 0   | 1   | 1  | 437     | 0   | 8   | 2   | 8  | 1  | 1   | 14  | 0  | 0  | 0        | 5       | 0  | 0   | 2   | 0   | 0   | 1   | 0        | 0   | 0   | 0   | 0   | 586 | 559 | PL  |
| PT        | 0   | 0   | 0   | 0   | 0  | 0       | 257 | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 13  | 0   | 0   | 3   | 0   | 0        | 2   | 0   | 0   | 0   | 345 | 345 | ΡT  |
| RO        | 0   | 1   | 0   | 0   | 0  | 12      | 0   | 530 | 21  | 2  | 0  | 1   | 4   | 0  | 0  | 4        | 10      | 0  | 0   | 0   | 1   | 1   | 0   | 0        | 1   | 0   | 0   | 0   | 661 | 610 | RO  |
| RS        | 8   | 23  | 0   | 0   | 0  | 11      | 0   | 39  | 517 | 1  | 0  | 2   | 5   | 0  | 0  | 2        | 2       | 0  | 0   | 0   | 0   | 2   | 0   | 0        | 1   | 0   | 0   | 0   | 777 | 194 | RS  |
| RU        | 0   | 0   | 0   | 0   | 0  | 2       | 0   | 0   | 0   | 34 | 0  | 0   | 0   | 0  | 0  | 0        | 1       | 0  | 0   | 0   | 0   | 0   | 0   | 0        | 0   | 0   | 0   | 0   | 49  | 5   | RU  |
| SE        | 0   | 0   | 0   | 1   | 5  | 4       | 0   | 0   | 0   | 1  | 34 | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 0   | 3   | 0   | 0   | 1   | 0        | 0   | 0   | 0   | 0   | 63  | 56  | SE  |
| SI        | 0   | 0   | 0   | 0   | 0  | (       | 0   | 4   | 5   | 0  | 0  | 505 | 2   | 0  | 0  | 0        | 1       | 0  | 0   | 0   | 0   | 5   | 0   | 0        | 1   | 0   | 0   | 0   | 859 | 848 | SI  |
| SK        | 0   | 1   | 0   | 1   | 0  | 80      | 0   | 24  | 8   | 1  | 0  | 4   | 295 | 0  | 1  | 1        | 5       | 0  | 0   | 0   | 0   | 1   | 0   | 20       | 0   | 0   | 0   | 0   | 045 | 024 | SK  |
| I J<br>TM | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 2  | 0  | 0   | 0   | 20 | 10 | 1        | 0       | 0  | 0   | 0   | 0   | 0   | 0   | 30<br>17 | 0   | 0   | 0   | 0   | 38  | 1   | тм  |
| TR        | 0   | 0   | 0   | 0   | 0  | 1       | 0   | 3   | 1   | 1  | 0  | 0   | 0   | 1  | 19 | 364      | 1       | 0  | 0   | 0   | 1   | 7   | 0   | 10       | 1   | 0   | 0   | 0   | 380 | 10  | TR  |
| IJΔ       | 0   | 0   | 0   | 0   | 0  | 24      | 0   | 24  | 1   | 10 | 0  | 0   | 3   | 0  | 0  | 504<br>5 | 83      | 0  | 0   | 0   | 2   | 1   | 0   | 0        | 0   | 0   | 0   | 0   | 195 | 74  | ΠA  |
| U7        | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 3  | 0  | 0   | 0   | 2  | 2  | 1        | 0       | 35 | 0   | 0   | 0   | 0   | 0   | 7        | 0   | 0   | 0   | 0   | 63  | 1   | U7  |
| ATL       | 0   | 0   | 0   | 0   | 0  | 0       | 2   | 0   | 0   | 1  | 0  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 7   | 0   | 0   | 0   | 0   | . 0      | 1   | 0   | 0   | 0   | 16  | 14  | ATL |
| BAS       | 0   | 0   | 0   | 2   | 2  | 23      | 0   | 1   | 0   | 5  | 15 | 0   | 0   | 0  | 0  | 0        | 1       | 0  | 0   | 21  | 0   | 0   | 2   | 0        | 0   | 0   | 0   | 0   | 113 | 101 | BAS |
| BLS       | 0   | 0   | 0   | 0   | 0  | 4       | 0   | 22  | 3   | 9  | 0  | 0   | 1   | 0  | 0  | 67       | 15      | 0  | 0   | 0   | 21  | 4   | 0   | 0        | 1   | 0   | 0   | 0   | 153 | 42  | BLS |
| MED       | 1   | 1   | 1   | 0   | 0  | 1       | 1   | 2   | 2   | 1  | 0  | 1   | 0   | 0  | 0  | 24       | 1       | 0  | 1   | 0   | 0   | 68  | 0   | 5        | 20  | 0   | 0   | 0   | 142 | 106 | MED |
| NOS       | 0   | 0   | 0   | 7   | 5  | 3       | 0   | 0   | 0   | 0  | 1  | 0   | 0   | 0  | 0  | 0        | 0       | 0  | 3   | 1   | 0   | 0   | 26  | 0        | 0   | 0   | 0   | 0   | 108 | 102 | NOS |
| AST       | 0   | 0   | 0   | 0   | 0  | 0       | 0   | 0   | 0   | 1  | 0  | 0   | 0   | 0  | 1  | 7        | 0       | 0  | 0   | 0   | 0   | 1   | 0   | 423      | 1   | 0   | 0   | 0   | 14  | 1   | AST |
| NOA       | 0   | 0   | 0   | 0   | 0  | 0       | 2   | 0   | 0   | 0  | 0  | 0   | 0   | 0  | 0  | 2        | 0       | 0  | 2   | 0   | 0   | 10  | 0   | 1        | 98  | 0   | 0   | 0   | 24  | 20  | NOA |
| EXC       | 0   | 1   | 0   | 1   | 1  | 11      | 2   | 9   | 4   | 16 | 1  | 1   | 2   | 0  | 1  | 17       | 4       | 1  | 0   | 0   | 0   | 1   | 1   | 3        | 0   | 0   | 0   | 0   | 175 | 107 | EXC |
| EU        | 0   | 1   | 0   | 4   | 1  | 39      | 7   | 33  | 4   | 2  | 4  | 4   | 6   | 0  | 0  | 2        | 2       | 0  | 2   | 1   | 0   | 4   | 3   | 0        | 1   | 0   | 0   | 0   | 434 | 418 | EU  |
|           | ME  | MK  | MT  | NL  | NO | PL      | PT  | RO  | RS  | RU | SE | SI  | SK  | ΤJ | ТМ | TR       | UA      | UΖ | ATL | BAS | BLS | MED | NOS | AST      | NOA | BIC | DMS | VOL | EXC | EU  |     |

### Table C.15: 2016 country-to-country blame matrices for **coarse EC**. Units: 0.1 ng/m<sup>3</sup> per 15% emis. red. of PPM. **Emitters** $\rightarrow$ , **Receptors** $\downarrow$ .

|          | AL | AM | AT | ΑZ | ΒA | ΒE | ΒG | ΒY | СН | CY | CZ    | DE | DK | EE | ES | FI | FR | GΒ | GE | GR | HR | ΗU | IE | IS | IT | KG | ΚZ | LT | LU | LV | MD |          |
|----------|----|----|----|----|----|----|----|----|----|----|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----------|
| AL       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | AL       |
| AM       | 0  | 6  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | AM       |
| AT       | 0  | 0  | 4  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | AT       |
| AZ       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | AZ       |
| BA       | 0  | 0  | 0  | 0  | 31 | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | BA       |
| BE       | 0  | 0  | 0  | 0  | 0  | 7  | 0  | 0  | 0  | 0  | 0     | 3  | 0  | 0  | 0  | 0  | 1  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | BE       |
| BG       | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | BG       |
| BY       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | BY       |
| СН       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 23 | 0  | 0     | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | СН       |
| cv       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 25 | 1  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | CV       |
| CT       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 2     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | CT       |
|          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | <br>О | 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |          |
|          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 15 | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |          |
|          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 3  | 1  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |          |
| EE       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 1  | 0  | T  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | EE       |
| ES       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | ES       |
| FI       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 4  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | FI       |
| FR       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 0  | 0  | 0  | 0  | 3  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | FR       |
| GB       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 30 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | GB       |
| GE       | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | -0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | GE       |
| GL       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | GL       |
| GR       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 4  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | GR       |
| HR       | 0  | 0  | 0  | 0  | 4  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | HR       |
| HU       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | HU       |
| IE       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | IE       |
| IS       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | IS       |
| IT       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | IT       |
| KG       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | KG       |
| ΚZ       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | ΚZ       |
| LT       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | LT       |
| LU       | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0     | 4  | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 9  | 0  | 0  | LU       |
| LV       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | LV       |
| MD       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | MD       |
| ME       | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | ME       |
| MK       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | MK       |
| мт       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | мт       |
| NI       | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0     | 4  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | NI       |
| NO       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | NO       |
|          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |          |
|          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |          |
|          | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |          |
| RU<br>DC | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | RU<br>DC |
| R5       | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | RS       |
| RU       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | RU       |
| SE       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | SE       |
| SI       | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | SI       |
| SK       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | SK       |
| ΤJ       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | ΤJ       |
| IM       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | IM       |
| TR       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | TR       |
| UA       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | UA       |
| UZ       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | UZ       |
| ATL      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | ATL      |
| BAS      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | BAS      |
| BLS      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | BLS      |
| MED      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | MED      |
| NOS      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | NOS      |
| AST      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | AST      |
| NOA      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | NOA      |
| EXC      | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | EXC      |
| EU       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 2  | 0  | 0  | 0  | 0  | 0  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | EU       |
|          | AL | AM | AT | ΑZ | ΒA | ΒE | BG | ΒY | СН | CY | CZ    | DE | DK | EE | ES | FI | FR | GB | GE | GR | HR | HU | IE | IS | IT | KG | ΚZ | LT | LU | LV | MD |          |

Table C.15 Cont.: 2016 country-to-country blame matrices for **coarse EC**. Units: 0.1 ng/m<sup>3</sup> per 15% emis. red. of PPM. **Emitters**  $\rightarrow$ , **Receptors**  $\downarrow$ .

|          | ME | MK | MT | NL | NO | ΡL     | РΤ | RO | RS | RU | SE | SI     | SK | ТJ | ТΜ | ΤR | UA     | UZ | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC | DMS | VOL | EXC    | EU     |          |
|----------|----|----|----|----|----|--------|----|----|----|----|----|--------|----|----|----|----|--------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|----------|
| AL       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 2      | 1      | AL       |
| AM       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 3  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 4   | 0   | 0   | 0   | 0   | 9      | 0      | AM       |
| AT       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 7      | 7      | AT       |
| AZ       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 0   | 0   | 1      | 0      | AZ       |
| BA       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 34     | 2      | BA       |
| BE       | 0  | 0  | 0  | 1  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 0   | 14     | 14     | BE       |
| BG       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 2  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 5      | 3      | BG       |
| BY       | 0  | 0  | 0  | 0  | 0  | 6      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 8      | 7      | BY       |
| СН       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 25     | 2      | СН       |
| cv       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 2   | 0   | 1   | 1   | 0   | 0   | 0   | 10     | 1      | CV       |
| C7       | 0  | 0  | 0  | 0  | 0  | 11     | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   |     | 0   | -   | 0   | 0   | 0   | 0   | 17     | 17     | C7       |
|          | 0  | 0  | 0  | 0  | 0  | 11     | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 21     | 20     |          |
|          | 0  | 0  | 0  | 0  | 0  | т<br>2 | 0  | 0  | 0  | 0  | 1  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 1   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 21     | 20     |          |
| EE       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 1   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 2      | 2      | EE       |
|          | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 1   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 3<br>0 | ა<br>ე |          |
| E3<br>F1 | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 2      | 2      | E3<br>F1 |
|          | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 5      | 5      |          |
| FR       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 5      | 5      | FR       |
| GB       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 30     | 30     | GB       |
| GE       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 2  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 4      | 0      | GE       |
| GL       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0      | 0      | GL       |
| GR       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 2  | 0      | 0  | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 0   | 0   | 7      | 4      | GR       |
| HR       | 0  | 0  | 0  | 0  | 0  | 2      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 10     | 6      | HR       |
| HU       | 0  | 0  | 0  | 0  | 0  | 4      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10     | 9      | ΗU       |
| IE       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 4      | 4      | IE       |
| IS       | 0  | 0  | -0 | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0      | 0      | IS       |
| IT       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 0   | 0   | 4      | 4      | IT       |
| KG       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 2      | 0      | KG       |
| ΚZ       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 3      | 0      | ΚZ       |
| LT       | 0  | 0  | 0  | 0  | 0  | 8      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 9      | 9      | LT       |
| LU       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 17     | 17     | LU       |
| LV       | 0  | 0  | 0  | 0  | 0  | 3      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 4      | 4      | LV       |
| MD       | 0  | 0  | 0  | 0  | 0  | 3      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1  | 1      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 6      | 4      | MD       |
| ME       | 1  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 3      | 1      | ME       |
| MK       | 0  | 1  | 0  | 0  | 0  | 1      | 0  | 0  | 1  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 3      | 1      | MK       |
| МТ       | 0  | 0  | 24 | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 17  | 0   | 0   | 2   | 0   | 0   | 0   | 25     | 24     | ΜТ       |
| NL       | 0  | 0  | 0  | 5  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 5   | 0   | 0   | 0   | 0   | 0   | 14     | 14     | NL       |
| NO       | 0  | 0  | 0  | 0  | 1  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1      | 0      | NO       |
| PL       | 0  | 0  | 0  | 0  | 0  | 86     | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 88     | 88     | PL       |
| PT       | 0  | 0  | 0  | 0  | 0  | 0      | 3  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 1   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 3      | 3      | РТ       |
| RO       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 1  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 4      | 3      | RO       |
| RS       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 6  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 10     | 2      | RS       |
| RU       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 6  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | -0     | 0      | RU       |
| SE       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 4  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 5      | 5      | SE       |
| SI       | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | ں<br>ع | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 7      | 7      | SL       |
| SK       | 0  | 0  | 0  | 0  | 0  | 12     | 0  | 0  | 0  | 0  | 0  | 0      | 1  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 15     | 14     | SK       |
| ті       | 0  | 0  | 0  | 0  | 0  | 12     | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 2  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 0   | 0   | 2      | 14     | ті       |
| тм       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 2  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 6   | 0   | 0   | 0   | 0   | - 1    | 0      | тм       |
| TP       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 50 | 0      | 0  | 0   | 0   | 0   | 1   | 0   | 3   | 0   | 0   | 0   | 0   | 51     | 0      | TP       |
|          | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0<br>2 | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 7      | 1      |          |
|          | 0  | 0  | 0  | 0  | 0  | 4      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 2      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1      | 4      |          |
|          | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 1      | 0      |          |
| AIL      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 1  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0      | 0      | AIL      |
| BAS      | U  | 0  | 0  | 0  | 0  | 4      | 0  | 0  | 0  | Ű  | 1  | U      | U  | 0  | 0  | 0  | 0      | 0  | 0   | 2   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | (      | (      | BA2      |
| BLS      | 0  | 0  | Ű  | 0  | 0  | 1      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 8  | 0      | 0  | 0   | 0   | 1   | 0   | 0   | 0   | 0   | Ű   | 0   | 0   | 10     | 1      | BL2      |
| MED      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 3  | 0      | 0  | 0   | 0   | 0   | 6   | 0   | 2   | 3   | 0   | 0   | 0   | 4      | 1      | MED      |
| NOS      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 3   | 0   | 0   | 0   | 0   | 0   | 5      | 4      | NOS      |
| AST      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 1  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 169 | 0   | 0   | 0   | 0   | 1      | 0      | AST      |
| NOA      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 1   | 0   | 0   | 18  | 0   | 0   | 0   | 0      | 0      | NOA      |
| EXC      | 0  | 0  | 0  | 0  | 0  | 2      | 0  | 0  | 0  | 3  | 0  | 0      | 0  | 0  | 0  | 2  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 9      | 4      | EXC      |
| EU       | 0  | 0  | 0  | 0  | 0  | 7      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0  | 0  | 0      | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 14     | 14     | EU       |
|          | ME | MK | MT | NL | NO | ΡL     | PT | RO | RS | RU | SE | SL     | SK | ТJ | ТΜ | TR | UA     | UΖ | ATL | BAS | BLS | MED | NOS | AST | NOA | BIC | DMS | VOL | FXC    | FU     |          |

# APPENDIX D

### Explanatory note on country reports for 2016

The country reports issued by EMEP MSC-W focus on chemical species that are relevant to eutrophication, acidification and ground level ozone, but also information on particulate matter is given. More specifically, these country reports provide for each country:

- horizontal maps of emissions, and modelled air concentrations and depositions in 2016
- emission trends for the years 2000 to 2016
- modelled trends of air concentrations and depositions for the years 2000 to 2016
- maps and charts on transboundary air pollution in 2016, visualizing the effect of the country on its surroundings, and vice versa
- frequency analysis of air concentrations and depositions, based on measurements and model results for 2016, along with a statistical analysis of model performance
- scatter plots for different species, including available stations within the country
- maps on the risk of damage from ozone and particulate matter in 2016

EMEP MSC-W issues these country reports for 47 Parties to the Convention, and for Tajikistan, Turkmenistan and Uzbekistan. For the Russian Federation, the country report includes the territory of the Russian Federation, which is covered by the extended EMEP domain (see Figure 1.1).

All 50 country reports are written in English. For the 12 EECCA countries, the reports are made available also in Russian. All country reports can be downloaded in pdf format from the MSC-W report page on the EMEP website http://emep.int/mscw/mscw\_publications.html

This year, the country reports are found under the header 'MSC-W Data Note 1/2018'. The reports for each country can be selected conveniently from a drop-down menu.

## APPENDIX E

### Model Evaluation

The EMEP MSC-W model is regularly evaluated against various kinds of measurements, including ground-based, airborne and satellite measurements. As the main application of the EMEP MSC-W model within the LRTAP Convention is to assess the status of air quality on regional scales and to quantify long-range transboundary air pollution, the focus of the evaluation performed for the EMEP status reports is on the EMEP measurement sites.

Only parts of this evaluation are included in the printed version of the EMEP status report (see Chapter 2). A more comprehensive collection of maps, graphs and statistical analyses, including a more detailed discussion of model performance, are freely available as supplementary material from the MSC-W report page on the EMEP website http://emep.int/mscw/mscw\_publications.html

This year, the evaluation report is found under the link 'Supplementary material to EMEP Status Report 1/2018'. It contains a comprehensive evaluation of the EMEP MSC-W model for air concentrations and depositions in 2016. The report is divided into three chapters, dealing with pollutants responsible for eutrophication and acidification (Gauss et al. 2018b), ground level ozone and nitrogen dioxide (Gauss et al. 2018a), and particulate matter (Tsyro et al. 2018), respectively.

The agreement between model and measurements in 2016 is visualized as:

- scatter plots for the EMEP MSC-W model domain
- time series for individual EMEP stations
- · horizontal maps combining model results and EMEP measurement data

Tables summarize common statistical measures of model score, such as bias, root mean square error, temporal and spatial correlations and the index of agreement (see Chapter 1).

This type of model evaluation is performed on an annual basis and can be downloaded from the same web page also for previous years.

### References

- Gauss, M., Hjellbrekke, A.-G., Aas, W., and Solberg, S.: Ozone, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018a.
- Gauss, M., Tsyro, S., Fagerli, H., Hjellbrekke, A.-G., and Aas, W.: Acidifying and eutrophying components, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018b.
- Tsyro, S., Gauss, M., Hjellbrekke, A.-G., and Aas, W.: PM10, PM2.5 and individual aerosol components, Supplementary material to EMEP Status Report 1/2018, available online at www.emep.int, The Norwegian Meteorological Institute, Oslo, Norway, 2018.



Meteorological Synthesizing Centre – West Norwegian Meteorological Institute P.O.Box 43 – Blindern, NO-0313 Oslo, Norway





ccc NILU Norwegian Institute for Air Research -P.O. Box 100 NO-2027 Kjeller Norway Phone: +47 63 89 80 00 Fax: +47 63 89 80 50 E-mail: kjetil.torseth@nilu.no Internet: www.nilu.no

ciam International Institute for Applied Systems Analysis (IIASA) Schlossplatz 1 A-2361 Laxenburg Austria A-2361 Laxenburg Austria Phone: +43 2236 807 0 Fax: +43 2236 71 313 E-mail: amann@iiasa.ac.at Internet: www.iiasa.ac.at

### umweltbundesamt<sup>@</sup>

ceip Umweltbundesamt GmbH Spittelauer Lände 5 1090 Vienna Austria Phone: +43-(0)1-313 04 Fax: +43-(0)1-313 04/5400 E-mail: emep.emissions@umweltbundesamt.at Internet: http://www.umweltbundesamt.at/



msc-e Meteorological Synthesizing Centre-East 2nd Roshchinsky proezd, 8/5, room 207 115419 Moscow Buscio Russia Phone +7 926 906 91 78 Fax: +7 495 956 19 44 E-mail: msce@msceast.org Internet: www.msceast.org



# msc-w Norwegian Meteorological Institute (MET Norway) P.O. Box 43 Blindern NO-0313 OSLO Norway Norway Phone: +47 22 96 30 00 Fax: +47 22 96 30 50 E-mail: emep.mscw@met.no Internet: www.emep.int